Machine learning predicts anti-cancer drug efficacy

With the advent of pharmacogenomics, machine learning research is well underway to predict patients' drug response that varies by individual from the algorithms derived from previously collected data on drug responses. Entering high-quality learning data that can reflect a person's drug response as much as possible is the starting point for improving the accuracy of the prediction. Previously, preclinical studies of animal models were used which were relatively easier to obtain compared to human clinical data.

Photo

In light of this, a research team led by Professor Sanguk Kim in the Department of Life Sciences at POSTECH is drawing attention by successfully increasing the accuracy of anti-cancer drug response predictions by using data closest to a real person's response. The team developed this machine learning technique through algorithms that learn the transcriptome information from artificial organoids derived from actual patients instead of animal models.

Even patients with the same cancer have different reactions to anti-cancer drugs so customized treatment is considered paramount in treatment development. However, the current predictions were based on genetic information of cancer cells, limiting their accuracy. Due to unnecessary biomarker information, machine learning had an issue of learning based on false signals.

To increase the predictive accuracy, the research team introduced machine learning algorithms that use protein interaction network that can interact with target proteins as well as the transcriptome of individual proteins that are directly related with drug targets. It induces learning the transcriptome production of a protein that is functionally close to the target protein. Through this, only selected biomarkers can be learned instead of false biomarkers that the conventional machine learning had to learn, which increases the accuracy.

In addition, data from patient-derived organoids—not animal models—were used to narrow the discrepancy of responses in actual patients. With this method, colorectal cancer patients treated with 5-fluorouracil and bladder cancer patients treated with cisplatin were predicted to be comparable to actual clinical results.

The research was published in Nature Communications.

Subscribe to our newsletter

Related articles

Designing better antibody drugs with machine learning

Designing better antibody drugs with machine learning

Artificial intelligence could help to optimise the development of antibody drugs. This leads to active substances with improved properties, also with regard to tolerability in the body.

AI can identify cancerous cells by their acidity

AI can identify cancerous cells by their acidity

Using a special dye, cells are colored according to their pH, and a machine learning algorithm can detect changes in the color spectrum due to cancer.

Machine learning speeds up drug discovery

Machine learning speeds up drug discovery

Researchers have developed a machine learning-based technique that speeds speeds up calculations of drug molecules' binding affinity to proteins.

Using AI to find new uses for existing medications

Using AI to find new uses for existing medications

Scientists have developed a machine learning method that crunches massive amounts of data to help determine which existing medications could improve outcomes in diseases for which they are not prescribed.

Machine learning comes of age in cystic fibrosis

Machine learning comes of age in cystic fibrosis

Researchers have developed AI technology that offers a glimpse of the future of precision medicine, and unprecedented predictive power to clinicians caring for individuals with the life-limiting condition.

Machine learning system sorts out materials' databases

Machine learning system sorts out materials' databases

Scientists have used machin -learning to organize the chemical diversity found in the ever-growing databases for the popular metal-organic framework materials.

Neural network helps doctors explain relapses of heart failure

Neural network helps doctors explain relapses of heart failure

Researchers have developed an algorithm that not only predicts hospital readmissions of heart failure patients, but also tells you why these occur.

Network medicine makes drug repurposing effective

Network medicine makes drug repurposing effective

Artificial intelligence can increase the effectiveness of drug repositioning or repurposing research.

AI finds COVID-19 needles in a coronavirus haystack

AI finds COVID-19 needles in a coronavirus haystack

Scientists have assembled a combination of data mining, machine-learning algorithms and compression-based analytics to bring the most useful data to the fore on an office computer.

Popular articles

Subscribe to Newsletter