Three-dimensional Molecular Distance Map (MoDMap3D) of (a) 3273 viral sequences...
Three-dimensional Molecular Distance Map (MoDMap3D) of (a) 3273 viral sequences from Test-1 representing 11 viral families and realm Riboviria, (b) 2779 viral sequences from Test-2 classifying 12 viral families of realm Riboviria, (c) 208 Coronaviridae sequences from Test-3a classified into genera.
Source: Randhawa et al., PLOS ONE 2020 (CC BY 4.0)

Machine learning system crack COVID-19 genome signature

Using machine learning, a team of Western computer scientists and biologists have identified an underlying genomic signature for 29 different COVID-19 DNA sequences.

This new data discovery tool will allow researchers to quickly and easily classify a deadly virus like COVID-19 in just minutes – a process and pace of high importance for strategic planning and mobilizing medical needs during a pandemic. The study also supports the scientific hypothesis that COVID-19 (SARS-CoV-2) has its origin in bats as Sarbecovirus, a subgroup of Betacoronavirus.

The “ultra-fast, scalable, and highly accurate” classification system uses a new graphic-based, specialized software and decision-tree approach to illustrate the classification and arrive at a best choice out of all possible outcomes. The entire method uses a new graphic-based, specialized software to illustrate a best choice out of all tested possible outcomes. Biology professor Kathleen Hill co-led the study with Western collaborators in Computer Science and Statistical and Actuarial Sciences, along with others in the University of Waterloo’s Department of Computer Science.

The machine learning method achieves 100 per cent accurate classification of the COVID-19 sequences and more importantly, discovers the most relevant relationships among more than 5,000 viral genomes again within minutes. “All we needed was the COVID-19 DNA sequence to discover its own intrinsic sequence pattern. We used that signature pattern and a logical approach to match that pattern as close as possible to other viruses and achieved a fine level of classification in minutes – not days, not hours but minutes,” Hill said.

This classification tool has already been used to analyze more than 5,000 unique viral genomic sequences, including the 29 COVID-19 sequences available on Jan. 27. Hill believes the tool, which is able to classify any newly discovered virus sequence COVID-19 or otherwise, will be an essential component in the toolkit for vaccine and drug developers, front-line health-care workers, researchers and scientists during this global pandemic and beyond.

Subscribe to our newsletter

Related articles

Using machine learning to estimate COVID-19’s seasonal cycle

Using machine learning to estimate COVID-19’s seasonal cycle

Scientists are launching a project to apply machine learning methods to assess the role of climate variables in disease transmission

AI signals a possible disease resurgence

AI signals a possible disease resurgence

Scientists have used machine learning to predict the reemergence of existing infectious diseases.

Machine learning system sorts out materials' databases

Machine learning system sorts out materials' databases

Scientists have used machin -learning to organize the chemical diversity found in the ever-growing databases for the popular metal-organic framework materials.

AI finds COVID-19 needles in a coronavirus haystack

AI finds COVID-19 needles in a coronavirus haystack

Scientists have assembled a combination of data mining, machine-learning algorithms and compression-based analytics to bring the most useful data to the fore on an office computer.

mhealth: Bluetooth to detect COVID-19 cases

mhealth: Bluetooth to detect COVID-19 cases

Researchers concluded that Bluetooth technology is ideal for detecting possible COVID-19 cases through smartphone contact tracing.

mhealth: App determines COVID-19 disease severity

mhealth: App determines COVID-19 disease severity

A new mobile app can help clinicians determine which patients with the novel coronavirus (COVID-19) are likely to have severe cases.

Using machine learning to detect COVID-19 in X-rays

Using machine learning to detect COVID-19 in X-rays

Students at Cranfield University have designed computer models that can identify COVID-19 in X-rays.

Wearable tracks COVID-19 key symptoms

Wearable tracks COVID-19 key symptoms

Researchers have developed a wearable device to catch early signs and symptoms associated with COVID-19 and to monitor patients as the illness progresses.

COVID 19: AI to predict patients' risk of needing ventilators

COVID 19: AI to predict patients' risk of needing ventilators

Experts have begun using artificial intelligence to create computer models that calculate the risk of a corona patient’s needing intensive care or a ventilator.

Popular articles