EPFL engineers have developed a computer chip that combines two functions –...
EPFL engineers have developed a computer chip that combines two functions – logic operations and data storage – into a single architecture, paving the way to more efficient devices. Their technology is particularly promising for applications relying on AI.
Source: 2020 EPFL / LANES

Next-generation computer chip for AIs

It’s a major breakthrough in the field of electronics. Engineers at EPFL’s Laboratory of Nanoscale Electronics and Structures (LANES) have developed a next-generation circuit that allows for smaller, faster and more energy-efficient devices – which would have major benefits for artificial-intelligence systems. Their revolutionary technology is the first to use a 2D material for what’s called a logic-in-memory architecture, or a single architecture that combines logic operations with a memory function.

Until now, the energy efficiency of computer chips has been limited by the von Neumann architecture they currently use, where data processing and data storage take place in two separate units. That means data must constantly be transferred between the two units, using up a considerable amount of time and energy.

By combining the two units into a single structure, engineers can reduce these losses. That’s the idea behind the new chip developed at EPFL, although it goes one step beyond existing logic-in-memory devices. The EPFL chip is made from MoS2, which is a 2D material consisting of a single layer that’s only three atoms thick. It’s also an excellent semiconductor. LANES engineers had already studied the specific properties of MoS2 a few years ago, finding that it is particularly well-suited to electronics applications. Now the team has taken that initial research further to create their next-generation technology.

The EPFL chip is based on floating-gate field-effect transistors (FGFETs). The advantage of these transistors is that they can hold electric charges for long periods; they are typically used in flash memory systems for cameras, smartphones and computers. The unique electrical proprieties of MoS2 make it particularly sensitive to charges stored in FGFETs, which is what enabled the LANES engineers to develop circuits that work as both memory storage units and programmable transistors. By using MoS2, they were able to incorporate numerous processing functions into a single circuit and then change them as desired.

A computer chip that combines two functions – logic operations and data...
A computer chip that combines two functions – logic operations and data storage.
Source: 2020 EPFL / LANES

In-depth expertise

“This ability for circuits to perform two functions is similar to how the human brain works, where neurons are involved in both storing memories and conducting mental calculations,” says Andras Kis, the head of LANES. “Our circuit design has several advantages. It can reduce the energy loss associated with transferring data between memory units and processors, cut the amount of time needed for computing operations and shrink the amount of space required. That opens the door to devices that are smaller, more powerful and more energy efficient.”

The LANES research team has also acquired in-depth expertise in fabricating circuits out of 2D materials. “We made our first chip ten years ago by hand,” says Kis. “But we have since developed an advanced fabrication process that lets us make 80 or more chips in a single run, with well-controlled properties.”

The research was published in in Nature.

Subscribe to our newsletter

Related articles

How humans use objects to solve problems

How humans use objects to solve problems

What's SSUP? The Sample, Simulate, Update cognitive model developed by MIT researchers learns to use tools like humans do.

virtual.COMPAMED receives international resonance

virtual.COMPAMED receives international resonance

COMPAMED 2020 took place entirely online due to the pandemic - but still won over their audiences due to their high degree of international resonance in this format too.

3D printed stents treat inflammation

3D printed stents treat inflammation

Researchers have produced biodegradable stents with esophageal-derived bioink to directly treat radiation esophagitis.

COVID-19 speeds up microfluidics development

COVID-19 speeds up microfluidics development

With soaring demand for point-of-care testing (POCT), microfluidics has been a pivotal resource as COVID-19 swept across the world.

Graphene – the versatile wonder material

Graphene – the versatile wonder material

Graphene has a vast variety of practical applications in the creation of new materials. But what exactly is graphene and what makes it so special?

E-skin: recyclable alternative to wearables?

E-skin: recyclable alternative to wearables?

A wearable electronic device that’s 'really wearable” - a stretchy and fully-recyclable circuit board - can heal itself, much like real skin.

virtual.COMPAMED 2020 highlights the importance of suppliers

virtual.COMPAMED 2020 highlights the importance of suppliers

The supplier sector will showcase its expertise and innovative high-tech solutions for the medical technology industry.

Cardiac patch treats heart disease

Cardiac patch treats heart disease

Researchers have developed rubbery a bioelectronic implantable device that can monitor and treat heart diseases.

Step closer to high-performing wearable

Step closer to high-performing wearable

The University of Surrey has unveiled a device with unique functionality that could signal the dawn of a new design philosophy for electronics, including next-generation wearables and eco-disposable sensors.

Popular articles