The captured endoscopic images were transferred to the DNUC. Superimposed...
The captured endoscopic images were transferred to the DNUC. Superimposed images were created from the original endoscopic image by filling in the tiles with a specific translucent color. The fill color and transmittance were determined corresponding to the result and to the probability of the score. The scientists designed the DNUC to output the following results: (1) endoscopic remission (yes/no), (2) histological remission (yes/no), and (3) the UCEIS score. In the determination of endoscopic remission, the DNUC showed high degrees of diagnostic accuracy (90.1%). Regarding the prediction of histological remission, the DNUC showed high diagnostic accuracy (92.9%).
Source: Tokyo Medical and Dental University

Using AI to assess ulcerative colitis

Researchers develop an AI system that effectively evaluates endoscopic mucosal findings from patients with ulcerative colitis without the need for biopsy collection.

Assessments of patients with ulcerative colitis (UC), which is a type of inflammatory bowel disease, are usually conducted via endoscopy and histology. But now, researchers from Japan have developed a system that may be more accurate than existing methods and may reduce the need for these patients to undergo invasive medical procedures. Researchers from Tokyo Medical and Dental University (TMDU) have revealed a newly developed AI system that can evaluate endoscopic findings of UC with an accuracy equivalent to that of expert endoscopists.

Accurate evaluations are critical in providing optimal care for patients with UC. Previous studies have indicated that both endoscopic remission, evaluated via assessment of endoscopic procedure, and histological remission, as indicated by the degree of microscopic inflammation, can predict patient outcomes, and are thus frequently used as treatment goals. However, intra- and inter-observer variations occur in both endoscopic and histological analyses, and histological analysis frequently requires the collection of tissue via biopsies, which are invasive and costly.

“The interpretation of endoscopic images is subjective and based on the experience of individual endoscopists, thereby making the standardization of evaluation and real-time characterization challenging,” says lead author of the study Kento Takenaka. “To address this, we sought to develop a deep neural network (DNN) system for consistent, objective, and real-time analysis of endoscopic images from patients with UC (DNUC).”

To do this, the researchers developed a system with DNNs to evaluate endoscopic images from patients with UC. DNNs are a type of AI machine-learning method that is based on the construction of artificial neural networks. “We constructed the DNUC algorithm, using 40,758 images of colonoscopies and 6885 biopsy results from 2012 patients with UC,” says senior author Mamoru Watanabe. “This comprised the training set for machine-learning, which enabled the algorithm to learn to accurately evaluate and classify the data”.

The researchers then validated the accuracy of the DNUC algorithm using 4187 endoscopic images and 4104 biopsy specimens from 875 patients with UC. “We found that the DNUC achieved a level of accuracy that was equivalent to that of expert endoscopists,” says Takenaka. “Thus, our system was able to predict histologic remission from UC using endoscopic images only, as opposed to both histological and endoscopic data. This represents an important development given the costs and risks associated with biopsies.”

The DNUC may be able to identify UC patients who are in remission without requiring them to undergo biopsy collection and analysis. This could save time and money for medical institutions, and limit exposure to invasive medical procedures for individuals with UC.

Subscribe to our newsletter

Related articles

AI identifies 'ugly ducklings' to catch skin cancer

AI identifies 'ugly ducklings' to catch skin cancer

Deep learning-based system enables dermatologist-level identification of suspicious skin lesions from smartphone photos, allowing better screening.

'Liquid' machine learning system adapts to changing conditions

'Liquid' machine learning system adapts to changing conditions

A machine learning system learns on the job. By continuously adapting to new data inputs, this “liquid network” could aid decision-making in medical diagnosis.

Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

Self-learning algorithms analyze imaging data

Self-learning algorithms analyze imaging data

Artificial neural networks open up new possibilities in interpreting the time-consuming imaging ´data.

Machine learning algorithm detects early stages of Alzheimer's

Machine learning algorithm detects early stages of Alzheimer's

An artificial intelligence-based detects early stages of Alzheimer’s through functional magnetic resonance imaging.

AI-enabled rapid diagnostic test for COVID-19

AI-enabled rapid diagnostic test for COVID-19

Scientists have developed an extremely rapid diagnostic test that detects and identifies viruses in less than five minutes.

Neural networks could help predict future self-harm

Neural networks could help predict future self-harm

Researchers have created artificial intelligence algorithm that can automatically identify patients at high risk of intentional self-harm, based on the information in the clinical notes in the electronic health record.

Using robotic assistance to make colonoscopy easier

Using robotic assistance to make colonoscopy easier

Scientists have made a breakthrough in their work to develop semi-autonomous colonoscopy, using a robot to guide a medical device into the body.

Neural network can determine lung cancer severity

Neural network can determine lung cancer severity

Researchers have created an artificial neural network that analyzes lung CT scans to provide information about lung cancer severity that can guide treatment options.

Popular articles