Using machine learning to detect COVID-19 in X-rays

Students at Cranfield University have designed computer models that can identify COVID-19 in X-rays. The models use computer vision and artificial intelligence (AI) to analyse chest X-ray imagery. It can classify information which would not normally be recognised with the naked eye and assist with the diagnosis of COVID-19.

Photo

A common symptom of COVID-19 is pneumonia. The AI is able to detect anomalies in an X-ray, classifying which are positive for pneumonia, then a second model is used to diagnose if the pneumonia is caused by the COVID-19 virus.

Two groups studying for their MSc programme, specialising in Computer and Machine Vision (CMV option), decided to take up this challenging topic as their group project. The group project provides the students with the opportunity to work collaboratively on problems and to devise a solution.

This year the group project activity was itself impacted by COVID-19 and, due to lockdown, some students returned to their homes overseas. The determined groups continued with their projects remotely, despite being thousands of miles apart in China and France, as well as nearby Cranfield and Milton Keynes. The video conferencing and IT facilities provided by the University to the students was vital in allowing access to the necessary computational resources, ensuring the continuation and success of their research.

The lack of X-ray imagery in the public domain containing COVID-19 details was a challenge - however the teams were able to build detailed information from various sources.

The groups employed conventional machine learning algorithms as wells as deep learning frameworks, a machine learning technique that teaches computers to learn by example. The AI model employed in this project was able to predict results with great accuracy. However, the research teams believe that they are able to further develop new algorithms to produce even more robust and reliable results.

The teams are led by Dr Zeeshan Rana, Lecturer in Computational Engineering at Cranfield University. He is now exploring collaboration opportunities with medical authorities or industry to develop the project to the next level, using more advanced AI algorithms and CT (computed tomography) scans to show greater detail and accuracy in the results.

Dr Zeeshan Rana said: “The research carried out in this pilot project has led to some extremely promising results and we are looking to build on this success rapidly to help in the fight against COVID-19. I am incredibly proud of the work my researchers have carried out. They are a credit to the University and I’m delighted that we are able to support them remotely in carrying out their studies.”

Subscribe to our newsletter

Related articles

AI accurately detects COVID-19 on chest x-rays

AI accurately detects COVID-19 on chest x-rays

Researchers have developed a new AI platform that detects COVID-19 by analyzing X-ray images of the lungs.

AI-enabled rapid diagnostic test for COVID-19

AI-enabled rapid diagnostic test for COVID-19

Scientists have developed an extremely rapid diagnostic test that detects and identifies viruses in less than five minutes.

AI distinguishes pneumonia from COVID-19

AI distinguishes pneumonia from COVID-19

Researchers have developed a predictive artificial intelligence model that can tell the difference between healthy patients, those who are ill with pneumonia and those who have COVID-19, from chest X-rays.

AI-based chest X-ray diagnosis tech approved

AI-based chest X-ray diagnosis tech approved

behold.ai has been issued with a CE Mark Class lla certification in the UK and EU for its AI-based technology that can diagnose chest X-rays as ‘normal’.

Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

Quantum nanodiamonds help detect disease earlier

Quantum nanodiamonds help detect disease earlier

The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV.

How AI can improve medical imaging

How AI can improve medical imaging

AI offers not only the possibility of better detection of a tumor, a skin lesion or some other indication but also can improve accuracy and efficiency for radiologists.

Sorting out viruses with machine learning

Sorting out viruses with machine learning

Scientists develop a label-free method for identifying respiratory viruses based on changes in electrical current when they pass through silicon nanopores.

Machine learning algorithm detects early stages of Alzheimer's

Machine learning algorithm detects early stages of Alzheimer's

An artificial intelligence-based detects early stages of Alzheimer’s through functional magnetic resonance imaging.

Popular articles