Using machine learning to detect COVID-19 in X-rays

Students at Cranfield University have designed computer models that can identify COVID-19 in X-rays. The models use computer vision and artificial intelligence (AI) to analyse chest X-ray imagery. It can classify information which would not normally be recognised with the naked eye and assist with the diagnosis of COVID-19.

Photo

A common symptom of COVID-19 is pneumonia. The AI is able to detect anomalies in an X-ray, classifying which are positive for pneumonia, then a second model is used to diagnose if the pneumonia is caused by the COVID-19 virus.

Two groups studying for their MSc programme, specialising in Computer and Machine Vision (CMV option), decided to take up this challenging topic as their group project. The group project provides the students with the opportunity to work collaboratively on problems and to devise a solution.

This year the group project activity was itself impacted by COVID-19 and, due to lockdown, some students returned to their homes overseas. The determined groups continued with their projects remotely, despite being thousands of miles apart in China and France, as well as nearby Cranfield and Milton Keynes. The video conferencing and IT facilities provided by the University to the students was vital in allowing access to the necessary computational resources, ensuring the continuation and success of their research.

The lack of X-ray imagery in the public domain containing COVID-19 details was a challenge - however the teams were able to build detailed information from various sources.

The groups employed conventional machine learning algorithms as wells as deep learning frameworks, a machine learning technique that teaches computers to learn by example. The AI model employed in this project was able to predict results with great accuracy. However, the research teams believe that they are able to further develop new algorithms to produce even more robust and reliable results.

The teams are led by Dr Zeeshan Rana, Lecturer in Computational Engineering at Cranfield University. He is now exploring collaboration opportunities with medical authorities or industry to develop the project to the next level, using more advanced AI algorithms and CT (computed tomography) scans to show greater detail and accuracy in the results.

Dr Zeeshan Rana said: “The research carried out in this pilot project has led to some extremely promising results and we are looking to build on this success rapidly to help in the fight against COVID-19. I am incredibly proud of the work my researchers have carried out. They are a credit to the University and I’m delighted that we are able to support them remotely in carrying out their studies.”

Subscribe to our newsletter

Related articles

AI accurately detects COVID-19 on chest x-rays

AI accurately detects COVID-19 on chest x-rays

Researchers have developed a new AI platform that detects COVID-19 by analyzing X-ray images of the lungs.

Machine learning to treat COVID-19 patients worldwide

Machine learning to treat COVID-19 patients worldwide

More than 20 hospitals from across the world together with NVIDIA have used AI to predict Covid patients’ oxygen needs on a global scale.

Photos of toasters train AI to detect COVID

Photos of toasters train AI to detect COVID

Research using machine learning on images of everyday items is improving the accuracy and speed of detecting respiratory diseases, reducing the need for specialist medical expertise.

COVID-19: AIs shortcuts lead to misdiagnosis

COVID-19: AIs shortcuts lead to misdiagnosis

Researchers discovered that AI models have a tendency to look for shortcuts. In the case of AI-assisted disease detection, these shortcuts could lead to diagnostic errors if deployed in clinical settings.

COVID-19: AI models not yet suitable for clinical use

COVID-19: AI models not yet suitable for clinical use

Researchers have found that out of the more than 300 COVID-19 machine learning models are not suitable for detecting or diagnosing COVID-19 from standard medical imaging.

AI-enabled rapid diagnostic test for COVID-19

AI-enabled rapid diagnostic test for COVID-19

Scientists have developed an extremely rapid diagnostic test that detects and identifies viruses in less than five minutes.

AI distinguishes pneumonia from COVID-19

AI distinguishes pneumonia from COVID-19

Researchers have developed a predictive artificial intelligence model that can tell the difference between healthy patients, those who are ill with pneumonia and those who have COVID-19, from chest X-rays.

AI-based chest X-ray diagnosis tech approved

AI-based chest X-ray diagnosis tech approved

behold.ai has been issued with a CE Mark Class lla certification in the UK and EU for its AI-based technology that can diagnose chest X-rays as ‘normal’.

Device diagnoses Covid-19 from saliva samples

Device diagnoses Covid-19 from saliva samples

Engineers have designed a device that can detect SARS-CoV-2 from a saliva sample in about an hour. They showed that the diagnostic is just as accurate as the PCR tests now used.

Popular articles

Subscribe to Newsletter