A metalens for AR and VR

Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a millimeter-size flat lens for virtualreality and augmentedreality platforms.

Photo
The augment reality imaging result using the full-color near-eye fiber scanning display, which shows an RGB-color virtual image floating in a real-world scene.
Source: Zhaoyi Li/Harvard University

Despite all the advances in consumer technology over the past decades, one component has remained frustratingly stagnant: the optical lens. Unlike electronic devices, which have gotten smaller and more efficient over the years, the design and underlying physics of today’s optical lenses haven’t changed much in about 3,000 years.

This challenge has caused a bottleneck in the development of next-generation optical systems such as wearable displays for virtual reality, which require compact, lightweight, and cost-effective components.

At the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), a team of researchers led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, has been developing the next generation of lenses that promise to open that bottleneck by replacing bulky curved lenses with a simple, flat surface that uses nanostructures to focus light.

In 2018, the Capasso’s team developed achromatic, aberration-free metalenses that work across the entire visible spectrum of light. But these lenses were only tens of microns in diameter, too small for practical use in VR and augmented reality systems.

Now, the researchers have developed a two-millimeter achromatic metalenses that can focus RGB (red, blue, green) colors without aberrations and developed a miniaturized display for virtual and augmented reality applications. “This state-of-the-art lens opens a path to a new type of virtual reality platform and overcomes the bottleneck that has slowed the progress of new optical device,” said Capasso, the senior author of the paper.

“Using new physics and a new design principle, we have developed a flat lens to replace the bulky lenses of today’s optical devices,” said Zhaoyi Li, a postdoctoral fellow at SEAS and first author of the paper. “This is the largest RGB-achromatic metalens to date and is a proof of concept that these lenses can be scaled up to centimeter size, mass produced, and integrated in commercial platforms.”

Photo
Source: Harvard University

Like previous metalenses, this lens uses arrays of titanium dioxide nanofins to equally focus wavelengths of light and eliminate chromatic aberration. By engineering the shape and pattern of these nanoarrays, the researchers could control the focal length of red, green and blue color of light. To incorporate the lens into a VR system, the team developed a near-eye display using a method called fiber scanning.

The display, inspired by fiber-scanning-based endoscopic bioimaging techniques, uses an optical fiber through a piezoelectric tube. When a voltage is applied onto the tube, the fiber tip scans left and right and up and down to display patterns, forming a miniaturized display. The display has high resolution, high brightness, high dynamic range, and wide color gamut.

In a VR or AR platform, the metalens would sit directly in front of the eye, and the display would sit within the focal plane of the metalens. The patterns scanned by the display are focused onto the retina, where the virtual image forms, with the help of the metalens. To the human eye, the image appears as part of the landscape in the AR mode, some distance from our actual eyes.

“We have demonstrated how meta-optics platforms can help resolve the bottleneck of current VR technologies and potentially be used in our daily life,” said Li.

Next, the team aims to scale up the lens even further, making it compatible with current large-scale fabrication techniques for mass production at a low cost.

The research was published in Science Advances.

Subscribe to our newsletter

Related articles

Modern VR and AR device can help simulate sight loss

Modern VR and AR device can help simulate sight loss

Virtual/augmented reality devices can simulate some of the key difficulties experienced due to glaucoma, suggests new study from City, University of London.

Nanophotonic optical element slim VR glasses

Nanophotonic optical element slim VR glasses

New optical elements that could revolutionize VR/AR glasses. At its heart is a nanophotonic optical element, which the developers call a metasurface.

AR makes chemistry and biology accessible everywhere

AR makes chemistry and biology accessible everywhere

A new website allows teachers and students to explore concepts from chemistry and biology by manipulating virtual molecules in augmented reality.

'Skin' sensor gives robots human sensation

'Skin' sensor gives robots human sensation

Researchers at Cornell University have developed stretchable sensors that gives robots and VirtualReality a human touch.

3D hand pose estimation using a wrist-worn camera

3D hand pose estimation using a wrist-worn camera

Researchers have developed a wrist-worn device for 3D hand pose estimation. The system consists of a camera that captures images of the back of the hand, and is supported by a neural network.

Quantum dots encapsulated in salt

Quantum dots encapsulated in salt

Researchers have developed the world's first inkjet technique for using saltwater to encapsulate Quantum dots materials.

Augmented Reality in the OR: matching man and machine

Augmented Reality in the OR: matching man and machine

One of the crucial future technologies in surgery is Augmented Reality. Most experts agree that AR will increase safety and efficiency, improve surgical training and decrease costs.

Electronic skin: Intuitive in the virtual reality

Electronic skin: Intuitive in the virtual reality

Scientists have developed the first electronic sensor that can simultaneously process both touchless and tactile stimuli.

Virtual reality: Avatars against obesity

Virtual reality: Avatars against obesity

A collaborative project develops virtual reality methods to positively affect the body perception of obese patients.

Popular articles

Subscribe to Newsletter