Graphic representation of what a patient sees when wearing an augmented reality...
Graphic representation of what a patient sees when wearing an augmented reality low vision aid.
Source: Scott Song for USC Roski Eye Institute

Augmented reality glasses as low vision aid

Researchers found that adapted augmented reality glasses can improve patients’ mobility by 50% and grasp performance by 70%.

Nearly one in 30 Americans over the age of 40 experience low vision — significant visual impairment that can’t be corrected with glasses, contact lenses, medication or surgery. In a new study of patients with retinitis pigmentosa, an inherited degenerative eye disease that results in poor vision, Keck School of Medicine of USC researchers found that adapted augmented reality (AR) glasses can improve patients’ mobility by 50% and grasp performance by 70%. “Current wearable low vision technologies using virtual reality are limited and can be difficult to use or require patients to undergo extensive training,” says Mark Humayun, MD, PhD, director of the USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, codirector of the USC Gayle and Edward Roski Eye Institute and University Professor of Ophthalmology at the Keck School. “Using a different approach — employing assistive technology to enhance, not replace, natural senses — our team adapted AR glasses that project bright colors onto patients’ retinas, corresponding to nearby obstacles.”

Patients with retinitis pigmentosa wore adapted AR glasses as they navigated through an obstacle course based on a FDA-validated functional test. Using video of each test, researchers recorded the number of times patients collided with obstacles, as well as the time taken to complete the course.

Patients averaged 50% fewer collisions with the adapted AR glasses. Patients also were asked to grasp a wooden peg against a black background — located behind four other wooden pegs — without touching the front items. Patients demonstrated a 70% increase in grasp performance with the AR glasses. “Patients with retinitis pigmentosa have decreased peripheral vision and trouble seeing in low light, which makes it difficult to identify obstacles and grasp objects. They often require mobility aids to navigate, especially in dark environments,” says Anastasios N. Angelopoulos, study project lead in Humayun’s research laboratory at the Keck School. “Through the use of AR, we aim to improve the quality of life for low vision patients by increasing their confidence in performing basic tasks, ultimately allowing them to live more independent lives.”

How the AR system works

The AR system overlays objects within a 6-foot wireframe with four bright, distinct colors. In doing so, the glasses provide visual color cues that help people with constricted peripheral vision interpret complex environments, such as avoiding obstacles in dimly lit environments.

To accomplish this, researchers used a process called simultaneous location and mapping, allowing the AR glasses to fully render the 3D structure of a room in real time. The glasses then translated this information into a semitransparent colored visual overlay, which highlighted potential obstacles with bright colors to help patients with spatial understanding and depth perception. This technology can work on commercially available devices.

According to Humayun, while major cost and technical issues remain, this type of assistive technology could eventually become more practical for everyday use in the near future.

Subscribe to our newsletter

Related articles

"Super Human Eye" works like a real one

"Super Human Eye" works like a real one

Researchers have crafted an artificial eye with capabilities close to its human model.

Modern VR and AR device can help simulate sight loss

Modern VR and AR device can help simulate sight loss

Virtual/augmented reality devices can simulate some of the key difficulties experienced due to glaucoma, suggests new study from City, University of London.

Augmedics launches AR guidance system for surgery

Augmedics launches AR guidance system for surgery

Groundbreaking AR system allows surgeons to visualize anatomy in real time – as if they have “x-ray vision” – and accurately guide their instruments and implants.

Eye surgery: Gaining insights through AR

Eye surgery: Gaining insights through AR

Eye surgery is a delicate and precise process. A new simulation platform based on augmented reality allows surgeons to practice surgical procedures on a virtual model in three dimensions.

New AR cellular with eye-tracking glasses unveiled

New AR cellular with eye-tracking glasses unveiled

Ocutrx Vision Technologies, LLC, a manufacturer of augmented reality (AR) glasses, announced a new, state-of-the-art design for the company’s flagship Oculenz AR Wear glasses.

Smart cane helps the visually impaired

Smart cane helps the visually impaired

Engineering students have created a smart cane that can help visually impaired people to avoid obstacles.

Prosthetics: Artificial pieces of brain communicate with real neurons

Prosthetics: Artificial pieces of brain communicate with real neurons

Researchers have developed a system for integrating artificial chip-based 'neurons' with real neurons using QR-code-like patterns of light to facilitate communication.

A GPS-like system for flexible medical robots

A GPS-like system for flexible medical robots

Roboticists at the University of California San Diego have developed an affordable, easy to use system to track the location of flexible surgical robots inside the human body.

Printed tattoo electrodes measure brain signal

Printed tattoo electrodes measure brain signal

A researcher has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

Popular articles