Sufferers of phantom limb pain describe a variety of sensations, from burning,...
Sufferers of phantom limb pain describe a variety of sensations, from burning, aching, and throbbing to crushing and shooting pain.
Source: Yen Strandqvist​​​​​​​

Is there a treatment for phantom limb pain?

Dr. Max Ortiz Catalan, Associate Professor at Chalmers University of Technology, Sweden, has developed a new theory for the origin of the mysterious phenomenon of phantom limb pain. His hypothesis builds upon his previous work on a revolutionary treatment for the condition, which uses machine learning and augmented reality.

hantom limb pain is a poorly understood condition in which people who have lost a limb can experience severe pain, seemingly located in that missing part of the body. The condition can be seriously debilitating and can drastically reduce the sufferer’s quality of life. But current ideas on its origins cannot explain clinical findings, nor provide a comprehensive theoretical framework for its study and treatment.

Now, Catalan has published a paper that offers a promising new theory that he terms “stochastic entanglement.” He proposes that after an amputation, neural circuitry related to the missing limb loses its role and becomes susceptible to entanglement with other neural networks – in this case, the network responsible for pain perception. “Imagine you lose your hand. That leaves a big chunk of real estate in your brain, and in your nervous system as a whole, without a job. It stops processing any sensory input, it stops producing any motor output to move the hand. It goes idle – but not silent,” explains Catalan.

Hebb’s Law

Photo
he patient, missing his right arm, can see himself on screen in augmented reality, with a virtual limb. He can control it through the electrodes attached to his skin, which in this treatment called Phantom Motor Execution allows the patient to stimulate and reactivate those dormant areas of the brain.
Source: Catalan, Frontiers in Neurology, 2018

Neurons are never completely silent. When not processing a particular job, they might fire at random. This may result in coincidental firing of neurons in that part of the sensorimotor network at the same time as from the network of pain perception. When they fire together, it creates the experience of pain in that part of the body.

“Normally, sporadic synchronised firing wouldn’t be a big deal, because it’s just part of the background noise, and it won’t stand out,” continues Catalan. “But in patients with a missing limb, such event could stand out when little else is going on at the same time. This can result in a surprising, emotionally charged experience—to feel pain in a part of the body you don’t have. Such a remarkable sensation could reinforce a neural connection, make it stick out, and help establish an undesirable link.”

Through a principle known as Hebb’s Law – “neurons that fire together, wire together” – neurons in the sensorimotor and pain perception networks become entangled, resulting in phantom limb pain. The new theory also explains why not all amputees suffer from the condition—the randomness, or stochasticity, means that simultaneous firing may not occur, and become linked, in all patients.

Phantom Motor Execution

In the new paper, Catalan goes on to examine how this theory can explain the effectiveness of Phantom Motor Execution (PME), the novel treatment method he previously developed. During PME treatment, electrodes attached to the patient’s residual limb pick up electrical signals intended for the missing limb, which are then translated through AI algorithms, into movements of a virtual limb in real time. The patients see themselves on a screen, with a digitally rendered limb in place of their missing one, and can then control it just as if it were their own biological limb . This allows the patient to stimulate and reactivate those dormant areas of the brain.

“The patients can start reusing those areas of brain that had gone idle. Making use of that circuitry helps to weaken and disconnect the entanglement to the pain network. It’s a kind of inverse Hebb’s law – the more those neurons fire apart, the weaker their connection. Or, it can be used preventatively, to protect against the formation of those links in the first place,” he says.

The PME treatment method has been previously shown to help patients for whom other therapies have failed. Understanding exactly how and why it can help is crucial to ensuring it is administered correctly and in the most effective manner. Catalan’s new theory could help unravel some of the mysteries surrounding phantom limb pain and offer relief for some of the most affected sufferers.

Subscribe to our newsletter

Related articles

AI for intensive care of traumatic brain injury

AI for intensive care of traumatic brain injury

AI-based algorithm may be utilized in the intensive care unit for treating patients with severe traumatic brain injury.

Virtual reality: Avatars against obesity

Virtual reality: Avatars against obesity

A collaborative project develops virtual reality methods to positively affect the body perception of obese patients.

AR allows researchers to see patients’ real-time pain

AR allows researchers to see patients’ real-time pain

Researchers have developed a technology to help clinicians "see" and map patient pain in real-time, through special augmented reality glasses.

Modern VR and AR device can help simulate sight loss

Modern VR and AR device can help simulate sight loss

Virtual/augmented reality devices can simulate some of the key difficulties experienced due to glaucoma, suggests new study from City, University of London.

VR for early detection of MS balance problems

VR for early detection of MS balance problems

The UNC School of Medicine lab of Jason Franz, PhD, created virtual reality experiments to show how a potentially portable and inexpensive test could reduce falls and related injuries in people with multiple sclerosis.

Wearable brain stimulator for stroke recovery

Wearable brain stimulator for stroke recovery

A non-invasive, wearable, magnetic brain stimulation device could improve motor function in stroke patients.

VR supports the treatment of children with brain injury

VR supports the treatment of children with brain injury

Research confirms the efficiency of using computer-based programmes and virtual reality for improving children's attention and social skills.

AI may alter how doctors treat depression

AI may alter how doctors treat depression

Artificial intelligence may soon play a critical role in choosing which depression therapy is best for patients.

VR reasearch reveals promising intervention in cancer treatment

VR reasearch reveals promising intervention in cancer treatment

The use of virtual reality can reduce anxiety and improve mood in women undergoing chemotherapy for breast cancer.

Popular articles