Touch screens to enable users to 'feel' objects

Reseachers are working to better define how the finger interacts with a device with the hope of aiding in the further development of technology that goes beyond sensing and reacting to your touch.

Photo
Hipwell’s team is examining how the finger interacts with a device down to the nanoscale.
Source: Dr. Cynthia Hipwell

The next time you buy a new couch, you may not ever have to leave your old one to get a feel for the texture of the new material. Dr. Cynthia Hipwell, Oscar S. Wyatt Jr. Chair II Professor in the J. Mike Walker Department of Mechanical Engineering at Texas A&M University, is leading a team working to better define how the finger interacts with a device with the hope of aiding in the further development of technology that goes beyond sensing and reacting to your touch.

The ultimate goal of furthering this human-machine interface is to give touch devices the ability to provide users with a richer touch-based experience by equipping the technology with the ability to mimic the feeling of physical objects. Hipwell shared examples of potential implementations ranging from a more immersive virtual reality platform to tactile display interfaces like those in a motor vehicle dashboard and a virtual shopping experience that would let the user feel the texture of materials before purchasing them.

"This could allow you to actually feel textures, buttons, slides and knobs on the screen," Hipwell said. "It can be used for interactive touchscreen-based displays, but one holy grail would certainly be being able to bring touch into shopping so that you could feel the texture of fabrics and other products while you're shopping online."

Hipwell explained that at its essence, the "touch" in current touch screen technology is more for the screen's benefit than the user. With the emergence and refinement of increasingly sophisticated haptic technology, that relationship between user and device can grow to be more reciprocal.

She added that the addition of touch as a sensory input would ultimately enrich virtual environments and lighten the burden of communication currently carried by audio and visuals.

"When we look at virtual experiences, they're primarily audio and visual right now and we can get audio and visual overload," Hipwell said. "Being able to bring touch into the human-machine interface can bring a lot more capability, much more realism, and it can reduce that overload. Haptic effects can be used to draw your attention to make something easier to find or easier to do using a lower cognitive load."

Hipwell and her team are approaching the research by looking at the multiphysics—the coupled processes or systems involving multiple physical fields occurring at the same time—of the interface between the user's finger and the device. This interface is incredibly complex and changes with different users and environmental conditions.

"We're looking at electro-wetting effects (the forces that result from an applied electric field), electrostatic effects, changes in properties of the finger, the material properties and surface geometry of the device, the contact mechanics, the fluid motion, charge transport—really, everything that's going on in the interface to understand how the device can be designed to be more reliable and higher performing," Hipwell said. "Ultimately, our goal is to create predictive models that enable a designer to create devices with maximum haptic effect and minimum sensitivity to user and environmental variation."

As research into and development of the technology continues to progress, Hipwell said she predicts consumers will begin to see early elements implemented into common devices over the next few years, with some early products already in development. "I think early elements of it will definitely be within the next five years," Hipwell said. "Then, it will just be a matter of maturing the technology and how advanced, how realistic and how widespread it becomes."

Subscribe to our newsletter

Related articles

Graphene – the versatile wonder material

Graphene – the versatile wonder material

Graphene has a vast variety of practical applications in the creation of new materials. But what exactly is graphene and what makes it so special?

A controllable nanoscale gas-liquid interface

A controllable nanoscale gas-liquid interface

Researchers have fabricated the first controllable gas-liquid interface at the nanoscale.

Twisted flakes could make better components for quantum computers

Twisted flakes could make better components for quantum computers

Single-crystal flake devices are so thin and defect-free, they might outperform existing components in quantum computers.

Self-powered implant stimulates fast bone healing

Self-powered implant stimulates fast bone healing

Reseachers have developed a self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing.

A soft electronic material for human-machine-interfacing

A soft electronic material for human-machine-interfacing

Researchers have developed a new material that can facilitate a near-perfect merger between machines and the human body for diagnostics and treatment.

Ink residue inhibits conductivity in 3D printed electronic

Ink residue inhibits conductivity in 3D printed electronic

Very thin layers of organic stabilizer residue in metal nanoparticle (MNP) inks are behind a loss of conductivity in 3D printed materials and electronic devices.

Voltaglue to seal up broken blood vessels

Voltaglue to seal up broken blood vessels

Researchers have developed a device that offers a less invasive way to seal tears and holes in blood vessels, using an electrically-activated glue patch applied via a minimally invasive balloon catheter.

New law of physics helps robots grasp the friction of touch

New law of physics helps robots grasp the friction of touch

Researchers have discovered a new law of physics that accounts for that accounts for elastohydrodynamic lubrication (EHL) friction, which should advance a wide range of robotic technologies.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Popular articles

Subscribe to Newsletter