The researchers use virtual reality technology to address issue of health,...
The researchers use virtual reality technology to address issue of health, including balance problems for people with multiple sclerosis.
Source: University of North Carolina Health Care

VR for early detection of MS balance problems

The UNC School of Medicine lab of Jason Franz, PhD, created virtual reality experiments to show how a potentially portable and inexpensive test could reduce falls and related injuries in people with multiple sclerosis.

People with multiple sclerosis (MS) often have a greatly increased risk of falling and injuring themselves even when they feel they’re able to walk normally. Now a team led by scientists from the UNC School of Medicine has demonstrated what could be a relatively easy method for the early detection of such problems.

The researchers used a virtual reality (VR) system to trick subjects into thinking they were falling as they walked on a treadmill. The scientists found clear differences in reactions between people with MS and people of the same age without MS. These differences were not evident between the groups when they walked in a normal way without the “falling” illusion.

The researchers believe that a VR-based test like this, after further study and development, could be made portable and used widely in neurology clinics to alert MS patients earlier to their balance impairments, allowing them to adopt measures to reduce their risk of falling. “Our promising results suggest that one can use VR to detect balance problems that usually go undetected until the individual starts experiencing real falls at home or work,” said study principal investigator Jason Franz, PhD, assistant professor in the UNC/NC State Joint Department of Biomedical Engineering.

MS is a brain disease that affects about 400,000 people in the United States and more than 2 million worldwide. It’s widely thought to be caused by inappropriate immune cell activity in the brain and features the loss of the insulating layer of myelin protein around nerve fibers – a loss that degrades the fibers’ abilities to conduct nerve signals. Signs and symptoms of MS include fatigue, numbness and tingling, cognitive impairments, mood instability, and balance and gait problems.

The latter can manifest unexpectedly. People who have MS and show little or no disability may already be at twice the risk of falling, on average, compared to people who don’t have MS. Studies also have found that people who have an MS diagnosis fall at least once per year on average. Many of these falls occur during activities such as walking.

Franz and his colleagues sought to develop a test that would reveal balance and gait impairments even in people with MS who may not be aware of these problems or display them during normal walking. “When we walk around, our brains use a variety of sensory feedback channels, including force sensors in our feet, to guide our movements and make corrections from one step to the next,” Franz said. “But in people with MS, those force sensors can become less reliable, so people need to rely more on other channels, especially vision.”

Franz and colleagues employed a VR device that allows the experimental manipulation of visual perception. Their laboratory device is a like a semi-circular theatre screen that subjects watch while walking on a treadmill. The VR scene depicted a hallway down which the subject seemed to be walking, at the same speed that the subject walked on the treadmill. Sometimes side-to-side wobbles in the scene created the illusion for each subject that he or she was becoming unstable, triggering a corrective reaction that could be measured as a change in gait and foot placement. Franz’s hypothesis was that the MS subjects with balance impairments would differ clearly from normal subjects in these corrective reactions.

The scientists tested 14 people with MS and 14 age-matched non-MS participants. They found that there was indeed a clear difference between the groups in their reactions, but this only became clear when using the VR balance challenge. “During normal walking without VR – even with our sophisticated lab equipment including a battery of 3D motion capture cameras – we could not effectively distinguish people with MS from the healthy, age-matched individuals,” Franz said. “So this perturbed-walking approach could have a lot of important clinical and translational applications.”

He and his colleagues now are adapting their system for use with consumer-grade VR headsets as a routine diagnostic tool to be used in neurologists’ clinics to detect balance impairments that would otherwise go unrecognized. They also hope to develop the VR system as a tool of physical therapy to help MS patients improve their balance and thus reduce the risk of falls.

Subscribe to our newsletter

Related articles

VR study: our visual world of color is incorrect

VR study: our visual world of color is incorrect

A study finds that people are aware of surprisingly limited color in their peripheral vision; much of our sense of a colorful visual world is likely constructed by our brain.

VR supports the treatment of children with brain injury

VR supports the treatment of children with brain injury

Research confirms the efficiency of using computer-based programmes and virtual reality for improving children's attention and social skills.

Is virtual reality not suited to visual memory?

Is virtual reality not suited to visual memory?

Researchers have found that virtual reality may interfere with visual memory.

Barking up the wrong tree with virtual reality

Barking up the wrong tree with virtual reality

Researcher used virtual reality to trick 20 patients with with intermittent arterial claudication, and discovered that they could suddenly walk much further.

Virtual “moonwalk” for science

Virtual “moonwalk” for science

In order to orient ourselves in space, and to find our way around, we form mental maps of our surroundings. Scientists used VR to detect distortions in our spatial memory.

Neurons that map memories identified using VR

Neurons that map memories identified using VR

Scientists correlate neuronal activity in the human entorhinal cortex with place-based memories; finding sheds new light on how the brain processes spatial memory.

Brain may not need body movements to learn virtual spaces

Brain may not need body movements to learn virtual spaces

A new study enhances our understanding of how the brain learns in virtual reality.

Virtual treasure hunt shows brain maps time sequence of memories

Virtual treasure hunt shows brain maps time sequence of memories

Combining learning in virtual reality and brain scans, researchers describes how a temporal map of memories is created in the entorhinal cortex.

VR helps to identify brain areas involved in a memory

VR helps to identify brain areas involved in a memory

Researchers used a virtual reality environment to train subjects, then showed that different areas of the hippocampus are activated for different types of memories.

Popular articles