Researchers harness virtual reality, motion capture to study neurological...
Researchers harness virtual reality, motion capture to study neurological disorders.
Source: University of Rochester Medical Center

VR allows researchers to study neurological disorders

Neuroscientists at the University of Rochester Medical Center (URMC) have a powerful new state-of-the-art tool at their disposal to study diseases like Autism, Alzheimer’s, and traumatic brain injury. The Mobile Brain/Body Imaging system, or MoBI, combines virtual reality, brain monitoring, and Hollywood-inspired motion capture technology, enabling researchers to study the movement difficulties that often accompany neurological disorders and why our brains sometimes struggle while multitasking.

“Many studies of brain activity occur in controlled environments where study subjects are sitting in a sound proof room staring at a computer screen,” said John Foxe, Ph.D., director of the URMC Del Monte Institute for Neuroscience. “The MoBI system allows us to get people walking, using their senses, and solving the types of tasks you face every day, all the while measuring brain activity and tracking how the processes associated with cognition and movement interact.”

The MoBI platform – which is located in the Del Monte Institute’s Cognitive Neurophysiology Lab – brings together several high tech systems. Using the same technology that is employed by movie studios to produce CGI special effects, study participants wear a black body suite that is fitted with reflective markers. Participants are then asked to walk on a treadmill or manipulate objects at a table in a room fitted out with 16 high speed cameras that record the position of the markers with millimeter precision. This data is mapped to a computer generated 3D model that tracks movement.

While they are walking, a virtual environment – a cityscape, for example – is projected on the screen in front of them which they must navigate. They can also be asked to perform task and make decisions in response to what is being projected on the screen. While this occurring, the brains of study participants are monitored via a high-density electroencephalogram (EEG) that detects electrical activity using small metal electrodes attached to the scalp.

The motion tracking and EEG data are synchronized, allowing researchers to track which areas of the brain are being activated when walking or performing task and study how the brain responds while moving, performing tasks, or doing both at the same time. This information could provide new insight into developmental diseases like Autism, which is often characterized with difficulty in processing sensory information from multiple sources. Individuals with Autism also often have an abnormal gait. People with Alzheimer’s, dementia, and sports concussions also experience movement difficulties.

“There is competition between the processes that allow you to walk well and the processes that allow you to think well,” said Ed Freedman, Ph.D., an associate professor in the Del Monte Institute and principal investigator in the Cognitive Neurophysiology Lab. “We don’t fall when we are sitting at a desk performing a task, we fall when we are walking down the street, avoiding traffic and other people, checking our phone, and thinking about what we are going to cook for dinner. We can use the MoBI to reveal underlying problems in the allocation of cognitive resources in individuals with neurological disorders because we are essentially stressing the system by asking them to perform task while on the treadmill.”

The researchers are currently using MoBI to establish a set of data with healthy individuals. This baseline of brain activity can then be compared to people with neurological disorders to identify new “signatures” of disease and brain processes that can be employed during clinical trials. “When you get good measurements of how the brain works and contrast that activity with people who are depressed or suffer from Autism or dementia, you can develop biomarkers – or neuro-markers – of disease,” said Foxe. “Using these neuro-markers we can then test whether a given intervention or therapeutic is actually working.”

Subscribe to our newsletter

Related articles

VR spots navigation problems in Alzheimer’s disease

VR spots navigation problems in Alzheimer’s disease

VR can identify early Alzheimer’s disease more accurately than ‘gold standard’ cognitive tests currently in use, suggests new research from the University of Cambridge.

Dementia: VR can improve quality of life

Dementia: VR can improve quality of life

New study, conducted with patients at a mental healthcare provider, showed significant improvements both during and after using VR.

VR helps to identify brain areas involved in a memory

VR helps to identify brain areas involved in a memory

Researchers used a virtual reality environment to train subjects, then showed that different areas of the hippocampus are activated for different types of memories.

What happens when your brain can't tell which way is up or down?

What happens when your brain can't tell which way is up or down?

Using virtual reality, researchers found that people differ in how much they are influenced by their visual environment.

A wireless chip shines light on the brain

A wireless chip shines light on the brain

Researchers have developed a chip that is powered wirelessly and can be surgically implanted to read neural signals and stimulate the brain with both light and electrical current.

VR study: our visual world of color is incorrect

VR study: our visual world of color is incorrect

A study finds that people are aware of surprisingly limited color in their peripheral vision; much of our sense of a colorful visual world is likely constructed by our brain.

VR supports the treatment of children with brain injury

VR supports the treatment of children with brain injury

Research confirms the efficiency of using computer-based programmes and virtual reality for improving children's attention and social skills.

Is virtual reality not suited to visual memory?

Is virtual reality not suited to visual memory?

Researchers have found that virtual reality may interfere with visual memory.

Barking up the wrong tree with virtual reality

Barking up the wrong tree with virtual reality

Researcher used virtual reality to trick 20 patients with with intermittent arterial claudication, and discovered that they could suddenly walk much further.

Popular articles