3D virtual simulations of irregular heartbeats

Scientists at Johns Hopkins have successfully performed 3D personalized virtual simulations of the heart. That way they can accurately identify where cardiac specialists should electrically destroy cardiac tissue to stop potentially fatal irregular and rapid heartbeats in patients with scarring in the heart.

Photo
Scientists use 3D personalized virtual hearts to guide treatment for irregular heartbeats.
Source: Johns Hopkins University

“Cardiac ablation, or the destruction of tissue to stop errant electrical impulses, has been somewhat successful but hampered by a lot of guesswork and variability in the way that physicians figure out which locations to zap with a catheter,” says Natalia Trayanova, Ph.D., Professor in the Department of Biomedical Engineering at The Johns Hopkins University Schools of Engineering and Medicine. “Our new study results suggest we can remove a lot of the guesswork, standardize treatment and decrease the variability in outcomes, so that patients remain free of arrhythmia in the long term,” she adds. 

In a bid to locate arrhythmias more precisely, Trayanova and her research team developed 3D personalized computational models of patients’ hearts based on contrast-enhanced clinical MRI images. Each heart tissue cell in the model generates electrical signals with the aid of mathematical equations representing how heart cells behave when they are healthy, or when they are semiviable when near the scar. By poking the patient’s virtual heart with small electrical signals in different locations, the computer program then determines whether the heart develops an arrhythmia and the location of the tissue that perpetuates it. Using the model, Trayanova then simulates an ablation to that area of the heart and runs the computer program over and over to find multiple locations that doctors should ablate on the actual patient.

Personalized simulation predictions

Photo
Current estimates indicate that cardiac ablation is successful anywhere between 50 and 88 percent of the time, but outcomes are difficult to predict.
Source: Johns Hopkins University

Trayanova and her team used MRI images to create personalized heart models of 21 people who previously had successful cardiac ablation procedures for infarct-related ventricular tachycardia at The Johns Hopkins Hospital between 2006 and 2017. The 3D modeling of these patients correctly identified and predicted the locations where physicians ablated heart tissue. In five patients, the amount of ablated tissue identified by the 3D model was smaller overall—in some cases, more than 10 times smaller—than the area that was destroyed during the patients’ procedures.

Next, they tested the 3D simulation to guide cardiac ablation treatments for three patients with ventricular tachycardia at the University of Utah and two patients at the University of Pennsylvania. Two patients who received the simulation-guided ablation procedure have remained free of tachycardia throughout follow-up periods of 23 and 21 months. One patient who had the simulation procedure remained free of tachycardia after two months of follow up. In two patients, the virtual heart approach predicted that tachycardias would not be inducible — this was confirmed during the clinical procedure, so cardiac ablation was not performed.

With this prospective test, the research team demonstrated the feasibility of integrating a computer-simulated prediction into the clinical routine. The patient is scanned approximately 24 hours or less before the procedure. Then, the simulation is created and a prediction is made of where physicians should perform the ablation. Finally, the predicted set of ablation targets is imported into the mapping system before the patient’s procedure so that the ablation catheter is navigated directly to the predicted targets.

The study represents the first attempt to incorporate personalized simulation predictions as part of anti-arrhythmia treatment. The researchers believe that implementing these predictions will cut down the lengthy and invasive cardiac mapping process and reduce complications experienced by patients. The technology could also reduce the need for repeat procedures through its ability to make the infarcted heart incapable of creating new arrhythmias. “It’s an exciting blend of engineering and medicine,” says Trayanova.

Subscribe to our newsletter

Related articles

Using a virtual 3D heart to fight atrial fibrillation

Using a virtual 3D heart to fight atrial fibrillation

A team at the University of Auckland's Bioengineering Institute has created a virtual 3D heart that could have a major impact on treatment of the most common heart rhythm disturbance, atrial fibrillation (AF).

AI measures fat around heart to predict diabetes

AI measures fat around heart to predict diabetes

Researchers have developed a new artificial intelligence tool that is able to automatically measure the amount of fat around the heart from MRI scan images.

A Lego system for building robots

A Lego system for building robots

Scientists have developed a system with which they can fabricate miniature robots building block by building block, which function exactly as required.

Hydrogel injection may repair heart muscle damagage

Hydrogel injection may repair heart muscle damagage

Researchers have developed an injectable hydrogel that could help repair and prevent further damage to the heart muscle after a heart attack.

AI, holographic microscopy beat scientists at analyzing immunotherapy​

AI, holographic microscopy beat scientists at analyzing immunotherapy​

AI is helping researchers decipher images from a new holographic microscopy technique needed to investigate a key process in cancer immunotherapy “live” as it takes place.

Cardivascular diseases: digital twin improves therapy

Cardivascular diseases: digital twin improves therapy

Using mathematical image processing, scientists have found a way to create digital twins from human hearts.

AR makes chemistry and biology accessible everywhere

AR makes chemistry and biology accessible everywhere

A new website allows teachers and students to explore concepts from chemistry and biology by manipulating virtual molecules in augmented reality.

Creating an accessible surgery simulator

Creating an accessible surgery simulator

Researchers are developing a simulator that could be used to train both surgeons who are in the early stages of their career and those who are more experienced.

Interactive VR tool for drug design against COVID-19

Interactive VR tool for drug design against COVID-19

Scientists have demonstrated a VR technique which should help in developing drugs against the SARS-CoV-2 virus – and enable researchers to share models and collaborate in new ways.

Popular articles

Subscribe to Newsletter