A battery capable of moving smoothly like snake scales

The Korea Institute of Machinery and Materials (KIMM) has developed a flexible, stretchable battery that bends and stretches like a snake. This battery could have a wide range of applications, from soft robots to wearable devices.

Photo
The battery mimicks the design of the scales and flexible joints found in the structure of snake scales. Upon zooming in on the battery, one can see that it consists of a hexagonal battery and flexible electrical interconnections. The stretchable structure is realized by the flexible interconnections that can freely fold and unfold.
Source: Korea Institute of Machinery and Materials (KIMM)

The KIMM research team, led by Senior Researcher Dr. Bongkyun Jang and Principal Researcher Dr. Seungmin Hyun at the Department of Nano-Mechanics, developed a stretchable battery structure whose characteristics are based on the structure of snake scales.

Like the boa constrictor that swallowed the elephant in the novella "The Little Prince," a snake's individual scales, while rigid, can fold together to protect against external impact. They also possess structural characteristics that allow them to be highly stretchable and move flexibly.

The research team developed the highly stretchable battery with an excellent stability and performance by fabricating a mechanical meta-structure mimicking a snake's scale. Unlike conventional wearable devices, in which the device's frame and the battery are combined in a tight formation, this new technology enables flexible movement by connecting several small, hard batteries in a scale-like structure.

To ensure the battery's safety, the research team also minimizes deformation of the materials composing battery by optimal design of the scale-like structure. Also, the shape of each battery cell was optimized to achieve high capacity per a unit size.

Photo
The battery is applied to a soft robot with moveable joints like a snake to observe its flexibility when moving. The battery can be attached to various types of robots that crawl or move in a serpentine fashion, morphing its shape accordingly depending on their movement while, at the same time, providing power to actuate untethered robots.
Source: Korea Institute of Machinery and Materials (KIMM)

Designing the shape of the battery cell and the connective components were the key aspects of this technological achievement. Small, hexagonal battery cells resembling snake scales were connected with polymer and copper material that use a hinge mechanism to fold and unfold. This design also facilitates economical mass-production, because the battery can be made by cutting and folding flexible electrodes with a manufacturing process inspired by the art of origami.

This new technology can be implemented in energy storage devices found in wearable soft robots for humans, which require soft and flexible energy storage devices, or for those found in rehabilitation devices for the elderly and the sick who need physical assistance. In addition, these batteries could be useful as power supply devices for soft robots that are used on site during disasters to help conduct rescue missions. Thanks to their ability to move flexibly and freely change shape, robots equipped with these batteries can be used to access narrow spaces blocked off by obstacles during such disaster situations.

Photo
The battery is capable of conformably attaching to the shape of the human body, and also morph freely to match the wearer’s movement.
Source: Korea Institute of Machinery and Materials (KIMM)

In the future, the KIMM research team hopes to develop technology that can increase the storage capacity of soft energy storage devices. The team also hopes to develop multi-functional soft robots that combine artificial muscles with soft robot actuation technology.

Dr. Bongkyun Jang stated that by applying the structure and design of snake scales, the KIMM research team developed a battery that is not only safe to use, but also retains its flexibility and stretchability. He also added that, down the road, he and his team aim to continue conducting follow-up research and development, so that this technology can be used for rehabilitation medical care and disaster relief and help ensure the health and safety of the general public.

The researh was published in Soft Robotics.

Related articles

Sensor material powers wearables in extreme cold

Sensor material powers wearables in extreme cold

A new material that combines the flexibility of human skin with improved conductivity and tolerance of temperatures as low as -93 C.

E-skin has a strong future stretching ahead

E-skin has a strong future stretching ahead

A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time.

Sensor for smart textiles survives hammers

Sensor for smart textiles survives hammers

An ultra-sensitive, resilient strain sensor that can be embedded in textiles and soft robotic systems survived being tested by a washing machine and a car.

Robotic textiles could enable new mechanotherapy

Robotic textiles could enable new mechanotherapy

A new smart fabric that can be inflated and deflated by temperature-dependent liquid-vapor phase changes could enable a range of medical therapeutics.

Smart textiles: breathable fabric to power small electronics

Smart textiles: breathable fabric to power small electronics

Scientists have created a new triboelectric fabric that generates electricity from the movement of the body while remaining flexible and breathable.

Electronic skin – the next generation of wearables

Electronic skin – the next generation of wearables

Electronic skins will play a significant role in monitoring, personalized medicine, prosthetics, and robotics.

Tiny bubbles help create soft robotics

Tiny bubbles help create soft robotics

Researchers use bubble casting to create soft robotics capable of grabbing and lifting a ball when inflated with air.

Wash-and-wear biosensors

Wash-and-wear biosensors

A process turns clothing fabric into biosensors which measure a muscle’s electrical activity as it is worn.

ReSkin helps to discover a sense of touch

ReSkin helps to discover a sense of touch

Carnegie Mellon University and Meta AI (formerly Facebook AI) want to increase the sense of touch in robotics, wearables, smart clothing and AI.

Popular articles

Subscribe to Newsletter