The microneedle is significantly smaller than the commercial standard for...
The microneedle is significantly smaller than the commercial standard for continuous glucose monitoring.
Source: KTH Royal Institute of Technology

A glucose monitor for diabetics proves virtually painless

A more comfortable and reliable blood-sugar monitoring system is being designed by researchers in Sweden for people with diabetes. After successfully testing a prototype of a microneedle patch on a human subject, the completion of a system for clinical tests is now underway.

Continuous monitoring is a way to safely and reliably lower blood glucose – giving the user a full picture of their glucose levels throughout the day and helping them avoid severe hypoglycemia. But the continuous glucose monitoring systems (known as CGMS) in use today have two main drawbacks: they are uncomfortable, since they require a minimum 7mm needle that’s inserted into the skin; and, because of their size, they take measurements in the fat tissue – not the most ideal location.

Researchers at KTH Royal Institute of Technology in Stockholm have developed a promising alternative: a microneedle patch that is 50 times smaller than the needles used in today’s CGM systems. The combination of the patch and an extremely miniaturized three-electrode enzymatic sensor was shown in a recent study to be capable of correctly and dynamically tracking blood glucose levels over time, with a delay of about 10 minutes, when applied to a human subject’s forearm.

One of the researchers, doctoral student Federico Ribet, says the next steps are to develop a transferable adhesive patch, along with algorithms and embedded electronics for a fully-realized system to take to clinical trial. “Our solution is painless to the user,” Ribet says. “We measure directly in the skin, and there are no nerve receptors that detect pain – just a fine mesh of very tiny blood vessels.”

Within the dermis, the hollow microneedles rely on natural capillary action to fill up with interstitial fluid, the liquid surrounding the cells in the skin. Nutrients like sugar, diffuse out of the blood capillaries in this fluid to reach the cells. “An important distinction is that unlike commercially available CGMS which measure the subcutaneous fat tissue, ours measures within the skin less than 1mm deep, where the interstitial fluid follows closer and more homogeneously the blood-glucose oscillations,” Ribet says.

This would offer an alternative to pricking one’s fingers several times a day to take a blood test, although a user would still occasionally have to do so – as they do with commercial CGMS – in order to recalibrate the sensor and get the most accurate and immediate readings. But with this new system, that could one day change. Ribet points out that the most advanced CGM device now on the market is factory calibrated and reduces the frequency of having to conduct a finger blood test. He says the research team at KTH believes it could ultimately match, or even surpass this level of quality.

Subscribe to our newsletter

Related articles

Microneedles: Nano-sized, huge impact

Microneedles: Nano-sized, huge impact

By downscaling the needles tool to micrometer-size, researchers open even more areas of application for them, while bypassing some of the most important issues.

No needles required for glucose levels monitoring

No needles required for glucose levels monitoring

Researchers have developed a first-of-its-kind wearable, noninvasive glucose monitoring device prototype.

Diabetology 4.0: emerging technologies for diabetes care

Diabetology 4.0: emerging technologies for diabetes care

This overview introduces smart insulin delivery systems and more innovations that help patients and doctors guide decision-making in diabetes care.

Biodegradable displays for sustainable sensors

Biodegradable displays for sustainable sensors

Scientists have developed biodegradable displays that due to their flexibility and adhesion can be worn directly on the hand.

Microneedles extract dermal interstitial fluid

Microneedles extract dermal interstitial fluid

Microneedle patches could provide a means for extracting interstitial fluid to study possible new biomarkers.

Diabetes: Painless paper patch test uses microneedles

Diabetes: Painless paper patch test uses microneedles

Researchers have developed a microneedle patch for monitoring glucose levels using a paper sensor.

Wearable sensors made from microbial nanocellulose

Wearable sensors made from microbial nanocellulose

Researchers have created a wearable sensor printed on microbial nanocellulose, a natural polymer.

Smart contact lenses diagnose and treat diabetes

Smart contact lenses diagnose and treat diabetes

Researchers developed wirelessly driven ‘smart contact lens’ technology that can detect diabetes and further treat diabetic retinopathy just by wearing them.

Swift Skin and Wound: App gives touchless measurements

Swift Skin and Wound: App gives touchless measurements

The app "Swift Skin and Wound", which accurately measures and charts the progression of skin wounds, could potentially have a significant impact on clinical management and patient outcomes.

Popular articles

Subscribe to Newsletter