Researchers can power the 5×3 mm2 chip, which has an integrated power receiver...
Researchers can power the 5×3 mm2 chip, which has an integrated power receiver coil, by applying an electromagnetic field. The chip is also capable of sending and receiving information wirelessly.
Source: Yaoyao Jia, NC State University

A wireless chip shines light on the brain

Researchers at North Carolina State University have developed a chip that is powered wirelessly and can be surgically implanted to read neural signals and stimulate the brain with both light and electrical current. The technology has been demonstrated successfully in rats and is designed for use as a research tool.

“Our goal was to create a research tool that can be used to help us better understand the behavior of different regions of the brain, particularly in response to various forms of neural stimulation,” says Yaoyao Jia, corresponding author of a paper on the work and an assistant professor of electrical and computer engineering at North Carolina State University. “This tool will help us answer fundamental questions that could then pave the way for advances in addressing neurological disorders such as Alzheimer’s or Parkinson’s disease.”

The new technology has two features that set it apart from the previous state of the art. First, it is fully wireless. Researchers can power the 5×3 mm2 chip, which has an integrated power receiver coil, by applying an electromagnetic field. For example, in testing the researchers did with lab rats, the electromagnetic field surrounded each rat’s cage – so the device was fully powered regardless of what the rat was doing. The chip is also capable of sending and receiving information wirelessly.

The second feature is that the chip is trimodal, meaning that it can perform three tasks. Current state-of-the-art neural interface chips of this kind can do two things: they can read neural signals in targeted regions of the brain by detecting electrical changes in those regions; and they can stimulate the brain by introducing a small electrical current into the brain tissue.

The new chip can do both of those things, but it can also shine light onto the brain tissue – a function called optical stimulation. But for optical stimulation to work, you have to first genetically modify targeted neurons to make them respond to specific wavelengths of light. “When you use electrical stimulation, you have little control over where the electrical current goes,” Jia says. “But with optical stimulation, you can be far more precise, because you have only modified those neurons that you want to target in order to make them sensitive to light. This is an active field of research in neuroscience, but the field has lacked the electronic tools it needs to move forward. That’s where this work comes in.”

In other words, by helping researchers (literally) shine a light on neural tissue, the new chip will help them (figuratively) shine a light on how the brain works.

The research was published in the journal IEEE Transactions on Biomedical Circuits and Systems.

Subscribe to our newsletter

Related articles

A precision chip recreates blood-brain barrier

A precision chip recreates blood-brain barrier

Researchers at Georgia Tech have now developed a chip that accurately replicates its function using the human cells that form this important part of our anatomy.

A quantum material could warn of neurological disease

A quantum material could warn of neurological disease

By speaking the brain’s language, the material is a portal between electronics and the brain.

Wearable sensors to track Parkinson's symptoms

Wearable sensors to track Parkinson's symptoms

Scientists have developed algorithms that, combined with wearable sensors, could help clinicians to monitor the progression of Parkinson’s disease.

Gamification: fighting dementia with play

Gamification: fighting dementia with play

Cognitive motor training helps in the fight against Alzheimer’s and dementia, as demonstrated for the first time in a study by an international team of researchers .

A promising future for soft bioelectronic interfaces

A promising future for soft bioelectronic interfaces

Researchers have demonstrated MRI compatibility in their soft electrode arrays – a crucial step in translation to the clinic.

Lab-created heart valves can grow with the recipient

Lab-created heart valves can grow with the recipient

Researchers have shown that lab-created heart valves implanted in young lambs for a year were capable of growth within the recipient.

Soft brain implant controls brain cells​

Soft brain implant controls brain cells​

Researchers have invented a smartphone-controlled soft brain implant that can be recharged wirelessly from outside the body.

What happens when your brain can't tell which way is up or down?

What happens when your brain can't tell which way is up or down?

Using virtual reality, researchers found that people differ in how much they are influenced by their visual environment.

First-ever living 3D-printed aneurysm

First-ever living 3D-printed aneurysm

Using 3D printing, researchers replicated an aneurysm in vitro and performed an endovascular repair procedure on the printed aneurysm.

Popular articles

Subscribe to Newsletter