Researchers can power the 5×3 mm2 chip, which has an integrated power receiver...
Researchers can power the 5×3 mm2 chip, which has an integrated power receiver coil, by applying an electromagnetic field. The chip is also capable of sending and receiving information wirelessly.
Source: Yaoyao Jia, NC State University

A wireless chip shines light on the brain

Researchers at North Carolina State University have developed a chip that is powered wirelessly and can be surgically implanted to read neural signals and stimulate the brain with both light and electrical current. The technology has been demonstrated successfully in rats and is designed for use as a research tool.

“Our goal was to create a research tool that can be used to help us better understand the behavior of different regions of the brain, particularly in response to various forms of neural stimulation,” says Yaoyao Jia, corresponding author of a paper on the work and an assistant professor of electrical and computer engineering at North Carolina State University. “This tool will help us answer fundamental questions that could then pave the way for advances in addressing neurological disorders such as Alzheimer’s or Parkinson’s disease.”

The new technology has two features that set it apart from the previous state of the art. First, it is fully wireless. Researchers can power the 5×3 mm2 chip, which has an integrated power receiver coil, by applying an electromagnetic field. For example, in testing the researchers did with lab rats, the electromagnetic field surrounded each rat’s cage – so the device was fully powered regardless of what the rat was doing. The chip is also capable of sending and receiving information wirelessly.

The second feature is that the chip is trimodal, meaning that it can perform three tasks. Current state-of-the-art neural interface chips of this kind can do two things: they can read neural signals in targeted regions of the brain by detecting electrical changes in those regions; and they can stimulate the brain by introducing a small electrical current into the brain tissue.

The new chip can do both of those things, but it can also shine light onto the brain tissue – a function called optical stimulation. But for optical stimulation to work, you have to first genetically modify targeted neurons to make them respond to specific wavelengths of light. “When you use electrical stimulation, you have little control over where the electrical current goes,” Jia says. “But with optical stimulation, you can be far more precise, because you have only modified those neurons that you want to target in order to make them sensitive to light. This is an active field of research in neuroscience, but the field has lacked the electronic tools it needs to move forward. That’s where this work comes in.”

In other words, by helping researchers (literally) shine a light on neural tissue, the new chip will help them (figuratively) shine a light on how the brain works.

The research was published in the journal IEEE Transactions on Biomedical Circuits and Systems.

Subscribe to our newsletter

Related articles

A precision chip recreates blood-brain barrier

A precision chip recreates blood-brain barrier

Researchers at Georgia Tech have now developed a chip that accurately replicates its function using the human cells that form this important part of our anatomy.

A quantum material could warn of neurological disease

A quantum material could warn of neurological disease

By speaking the brain’s language, the material is a portal between electronics and the brain.

Making imagined speech audible

Making imagined speech audible

With a speech neuroprosthetic, imagined speech can be made acoustically audible.

Virtual reality used in creative arts therapies

Virtual reality used in creative arts therapies

Virtual reality is an emerging as a tool in creative arts therapies. Now, researchers examined the differences in prefrontal cortex activation between two distinct drawing tasks in VR.

Navigation the brain's arteries with a steerable catheter

Navigation the brain's arteries with a steerable catheter

For the first time, a steerable catheter will give neurosurgeons the ability to steer the device in any direction they want while navigating the brain's arteries and blood vessels.

Neuroprosthesis decodes speech for paralyzed man

Neuroprosthesis decodes speech for paralyzed man

Researchers have developed a "speech neuroprosthesis" that has enabled a man with severe paralysis to communicate in sentences.

Brain-computer interface turns mental handwriting into text

Brain-computer interface turns mental handwriting into text

Scientists have used an implanted sensor to record the brain signals associated with handwriting, and used those signals to create text on a computer in real time.

Parkinsons: Brain activities wirelessly recorded

Parkinsons: Brain activities wirelessly recorded

Researchers have wirelessly recorded the brain activity of patients living with Parkinson's disease and then used that information to adjust the stimulation delivered by an implanted device.

Wearable sensors to track Parkinson's symptoms

Wearable sensors to track Parkinson's symptoms

Scientists have developed algorithms that, combined with wearable sensors, could help clinicians to monitor the progression of Parkinson’s disease.

Popular articles

Subscribe to Newsletter