Algorithm could unleash the power of quantum computers

A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

Photo
Fast-forwarding quantum calculations skips past the time limits imposed by decoherence, which plagues today's machines.
Source: DOE/Los Alamos National Laboratory

Quantum computers have a limited time to perform calculations before their useful quantum nature, which we call coherence, breaks down,” said Andrew Sornborger of the Computer, Computational, and Statistical Sciences division at Los Alamos National Laboratory. “With a new algorithm we have developed and tested, we will be able to fast forward quantum simulations to solve problems that were previously out of reach.”

Computers built of quantum components, known as qubits, can potentially solve extremely difficult problems that exceed the capabilities of even the most powerful modern supercomputers. Applications include faster analysis of large data sets, drug development, and unraveling the mysteries of superconductivity, to name a few of the possibilities that could lead to major technological and scientific breakthroughs in the near future.

Recent experiments have demonstrated the potential for quantum computers to solve problems in seconds that would take the best conventional computer millennia to complete. The challenge remains, however, to ensure a quantum computer can run meaningful simulations before quantum coherence breaks down.

“We use machine learning to create a quantum circuit that can approximate a large number of quantum simulation operations all at once,” said Sornborger. “The result is a quantum simulator that replaces a sequence of calculations with a single, rapid operation that can complete before quantum coherence breaks down.”

The Variational Fast Forwarding (VFF) algorithm that the Los Alamos researchers developed is a hybrid combining aspects of classical and quantum computing. Although well-established theorems exclude the potential of general fast forwarding with absolute fidelity for arbitrary quantum simulations, the researchers get around the problem by tolerating small calculation errors for intermediate times in order to provide useful, if slightly imperfect, predictions.

In principle, the approach allows scientists to quantum-mechanically simulate a system for as long as they like. Practically speaking, the errors that build up as simulation times increase limits potential calculations. Still, the algorithm allows simulations far beyond the time scales that quantum computers can achieve without the VFF algorithm.

One quirk of the process is that it takes twice as many qubits to fast forward a calculation than would make up the quantum computer being fast forwarded. In the newly published paper, for example, the research group confirmed their approach by implementing a VFF algorithm on a two qubit computer to fast forward the calculations that would be performed in a one qubit quantum simulation.

In future work, the Los Alamos researchers plan to explore the limits of the VFF algorithm by increasing the number of qubits they fast forward, and checking the extent to which they can fast forward systems.

The research was published npj Quantum Information.

Subscribe to our newsletter

Related articles

Artificial intelligence for emergency management

Artificial intelligence for emergency management

A consortium aims to develop a platform that will serve as the basis for novel services and test the use of new artificial intelligence tools.

Giving robots social skills

Giving robots social skills

A machine learning system helps robots understand and perform certain social interactions

AI accelerates discovery of 3D printing materials

AI accelerates discovery of 3D printing materials

A new machine learning system costs less, generates less waste, and can be more innovative than manual discovery methods.

Enabling AI-driven advances without sacrificing privacy

Enabling AI-driven advances without sacrificing privacy

Secure AI Labs is expanding access to encrypted health care data to advance AI-driven innovation in the field.

Cyber-physical organ twins to train surgeons

Cyber-physical organ twins to train surgeons

Researchers have developed a range of artificial organ phantoms to serve as training platforms for surgeons.

Machine learning to treat COVID-19 patients worldwide

Machine learning to treat COVID-19 patients worldwide

More than 20 hospitals from across the world together with NVIDIA have used AI to predict Covid patients’ oxygen needs on a global scale.

Expanding human-robot collaboration in manufacturing

Expanding human-robot collaboration in manufacturing

To enhance human-robot collaboration, researchers at Loughborough University have trained an AI to detect human intention.

Deep learning helps visualize X-ray data in 3D

Deep learning helps visualize X-ray data in 3D

Scientists have leveraged artificial intelligence to train computers to keep up with the massive amounts of X-ray data taken at the Advanced Photon Source.

Artificial intelligence shortcuts introduce bias in cancer treatment

Artificial intelligence shortcuts introduce bias in cancer treatment

AI tools models are a powerful tool in cancer treatment. However, unless these algorithms are properly calibrated, they can sometimes make inaccurate or biased predictions.

Popular articles

Subscribe to Newsletter