The Stentrode brain-computer interface, implanted via procedures commonly used...
The Stentrode brain-computer interface, implanted via procedures commonly used for neurovascular stent implantation, is designed to self-expand and grow into the blood vessels wall without obstructing blood flow.
Source: Synchron, Inc.

Brain-computer allows paralysed patients to text

Two ALS patients, implanted with the Stentrode brain-computer interface via the jugular vein and without the need for open brain surgery, successfully controlled their personal computer through direct thought.

Synchron, a neurovascular bioelectronics medicine company, announced the publication of a first-in-human study demonstrating successful use of the Stentrode brain-computer interface (BCI), or neuroprosthesis. Specifically, the study shows the Stentrode’s ability to enable patients with severe paralysis to resume daily tasks, including texting, emailing, shopping and banking online, through direct thought, and without the need for open brain surgery. The study is the first to demonstrate that a BCI implanted via the patient’s blood vessels is able to restore the transmission of brain impulses out of the body, and did so wirelessly. The patients were able to use their impulses to control digital devices without the need for a touchscreen, mouse, keyboard or voice activation technology.

“This is a breakthrough moment for the field of brain-computer interfaces. We are excited to report that we have delivered a fully implantable, take home, wireless technology that does not require open brain surgery, which functions to restore freedoms for people with severe disability,” said Thomas Oxley MD PhD, founding CEO, Synchron. “Seeing these first heroic patients resume important daily tasks that had become impossible, such as using personal devices to connect with loved ones, confirms our belief that the Stentrode will one day be able to help millions of people with paralysis.”

The patients enrolled in the study utilized the Stentrode neuroprosthesis to control the Microsoft Windows 10 operating system, in combination with an eye-tracker for cursor navigation, without the need for a mouse or keyboard. The subjects undertook machine learning-assisted training to control multiple mouse click actions, including zoom and left click. The first two patients achieved an average click accuracy of 92% and 93%, respectively, and typing speeds of 14 and 20 characters per minute with predictive text disabled. The patients used the neuroprosthesis to resume daily tasks independently, including text messaging, online shopping and managing finances. Following implantation and training, patients commenced unsupervised home use of the system from day 86 and day 71, respectively.

“Using the Stentrode has been life-altering,” said Graham Felstead, the first patient enrolled in the first Stentrode clinical study and the first person to have any BCI implanted via the blood vessels. “The device has allowed me to be productive again, including shopping, banking, and delegating tasks among the Rotary Club members with whom I volunteer. It’s incredible to gain this level of independence back.” By using the Stentrode, Graham was able to achieve his goals of remotely contacting his spouse, increasing his autonomy and reducing her burden of care. He was able to maintain contact with other family members, medical professionals and people in his community. Graham, a 75-year-old man living at home with his wife, has experienced severe paralysis due to amyotrophic lateral sclerosis (ALS), and received the Stentrode implant in August 2019. He continues to use it today.

The brain-computer interface can translate brain signals from the inside of a...
The brain-computer interface can translate brain signals from the inside of a blood vessel – without the need for open-brain surgery.
Source: Synchron, Inc.

“It is truly amazing, and very rewarding, to see the participants use the Stentrode to control a computer with their minds, independently and at home,” said Nicholas Opie, associate professor and co-head of the vascular bionics laboratory at the University of Melbourne and founding CTO of Synchron. “The trial participants have been fantastic, and my colleagues and I are truly honored to make a difference in their lives. I hope others are inspired by their success.”

The second participant, Philip O’Keefe, a 60-year-old man with ALS, working part time and living at home with his wife and two children, was able to control computer devices to conduct work-related tasks and other independent activities after receiving the Stentrode in April 2020. Functional impairment to his fingers, elbows, and shoulders had previously inhibited his ability to engage in these efforts.

“While the Stentrode is a completely novel concept and design, the procedure to implant it draws upon techniques that I use on a daily basis and which have become routine in our industry. The Stentrode technology exemplifies the progress and potential of neurointervention departments to deliver new therapies to patients,” said Professor Peter Mitchell, Director of Neurointervention, The Royal Melbourne Hospital, a pioneering neurointerventionalist who performed the first clinical implantations of the Stentrode device. “The intricacies of the brain have always fascinated me and enabling a patient with paralysis to continue to use their mind in a productive way is immensely rewarding.”

One patient utilizes the BCI to control the Microsoft Windows 10 operating...
One patient utilizes the BCI to control the Microsoft Windows 10 operating system, in combination with an eye-tracker for cursor navigation, without the need for a mouse or keyboard.
Source: Synchron, Inc

As the Stentrode device is small and flexible enough to safely pass through curving blood vessels, the implantation procedure is similar to that of a pacemaker and does not require open brain surgery. Neurointerventional surgery has rapidly grown as a subspecialty over the last 20 years and is now the first line option for cerebral aneurysm and large vessel stroke treatment. Entry through the blood vessels may reduce risk of brain tissue inflammation and rejection of the device, which has been an issue for techniques that require direct brain penetration. Implantation is conducted using well-established neurointerventional techniques which do not require any novel automated robotic assistance.

“Other approaches to brain-computer interfaces have been focused on high data rates, which create technical barriers to clinical translation. Synchron has focused on building a product that measurably improves patients’ lives. Our first-to-market product will focus on smart device control using brain impulses, without the need for the use of the hands. This alone has potential to address an unmet market need in 30 million patients in advanced economies,” added Oxley.

This feasibility study was published in the Journal of NeuroInterventional Surgery (JNIS).

Subscribe to our newsletter

Related articles

Neuroprosthesis decodes speech for paralyzed man

Neuroprosthesis decodes speech for paralyzed man

Researchers have developed a "speech neuroprosthesis" that has enabled a man with severe paralysis to communicate in sentences.

Brain-computer interface turns mental handwriting into text

Brain-computer interface turns mental handwriting into text

Scientists have used an implanted sensor to record the brain signals associated with handwriting, and used those signals to create text on a computer in real time.

First use of high-bandwidth wireless brain-computer interface

First use of high-bandwidth wireless brain-computer interface

BrainGate researchers demonstrated the first human use of a wireless transmitter capable of delivering high-bandwidth neural signals.

Brain-controlled computers are becoming a reality, but major hurdles remain

Brain-controlled computers are becoming a reality, but major hurdles remain

More researchers and companies are moving into the brain-computer interfaces, yet major challenges remain, from user training to the reality of invasive brain implant procedures.

A wireless chip shines light on the brain

A wireless chip shines light on the brain

Researchers have developed a chip that is powered wirelessly and can be surgically implanted to read neural signals and stimulate the brain with both light and electrical current.

Brains linked to computers using 3D printed implants

Brains linked to computers using 3D printed implants

Linking the human brain to a computer is usually only seen in science fiction, but now scientists have harnessed the power of 3D printing to bring the technology one step closer to reality.

Implants: Next-generation brain interfaces

Implants: Next-generation brain interfaces

Next-generation brain implants with more than a thousand electrodes can survive for more than six years.

3D printing enables tissue with customized shape

3D printing enables tissue with customized shape

3D-printed chambers with personalized shapes will be used to grow transplantable tissue that can take the shape of a wound to be closed.

A 3D multifunctional neural interface

A 3D multifunctional neural interface

Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site.

Popular articles

Subscribe to Newsletter