Doctors could soon be using them in implants to control the release of...
Doctors could soon be using them in implants to control the release of painkillers within tissue.
Source: 2019 EPFL/ Murielle Gerber

Circuit implants release painkillers inside the body

Researchers have developed biodegradable microresonators that could soon be used in implants to control the release of painkillers within tissue.

Patients fitted with an orthopedic prosthetic commonly experience a period of intense pain after surgery. In an effort to control the pain, surgeons inject painkillers into the tissue during the operation. When that wears off a day or two later, the patients are given morphine through a catheter placed near the spine. Yet catheters are not particularly comfortable, and the drugs spread throughout the body, affecting all organs.

Researchers in EPFL’s Microsystems Laboratory at the School of Engineering are now working on a biodegradable implant that would release a local anesthetic on-demand over several days. Not only would this implant reduce patients’ post-op discomfort, but there would be no need for further surgery to remove it. They developed a tiny biodegradable electronic circuit, made from magnesium, that could be heated wirelessly from outside the body.

Once integrated into the final device, the circuit will allow to release controlled amounts of anesthetic in a specific location over several days. After that, the implant will degrade safely inside the body.

One capsule with several reservoirs

Photo

The electronic circuit – a resonant circuit in the shape of a small spiral – is just a few microns thick. When exposed to an alternating electromagnetic field, the spiral resonator produces an electric current that creates heat.

The researchers’ end-goal is to pair the resonators with painkiller-filled capsules and then insert them into the tissue during surgery. The contents of the capsules could be released when an electromagnetic field sent from outside the body melts the capsule membrane. “We’re at a key stage in our project, because we can now fabricate resonators that work at different wavelengths,” says Matthieu Rüegg, a PhD student and the study’s lead author. “That means we could release the contents of the capsules individually by selecting different frequencies.” The heat-and-release process should take less than a second.

The researchers had to get creative when it came time to manufacture their biodegradable resonators. “We immediately ruled out any fabrication process that involved contact with water, since magnesium dissolves in just a few seconds,” says Rüegg. They ended up shaping the magnesium by depositing it on a substrate and then showering it with ions. “That gave us more flexibility in the design stage,” he adds. They were eventually able to create some of the smallest magnesium resonators in the world: two microns thick, with a diameter of three millimeters.

The team’s invention is not quite ready for the operating room. “We still need to work on integrating the resonators into the final device and show that it’s possible to release drugs both in vitro and in vivo,” concludes Rüegg.

Subscribe to our newsletter

Related articles

Prosthetics: sensors implanted for wireless control of muscle signal

Prosthetics: sensors implanted for wireless control of muscle signal

Researchers have successfully implanted sensors in three male patients following nerve transfers, to transmit biosignals for wireless control of robotic arms.

Miniaturized implants for personalized therapy

Miniaturized implants for personalized therapy

Researchers are working on miniaturization, external power supplies and wirelessly networked implants.

3D printing congress: AM Medical Days 2021

3D printing congress: AM Medical Days 2021

The first edition of the new conference series AM Medical Days 2021 starts with the focus on "Medical AM: How to apply it to patients?".

Medical technologies that come out of the printer

Medical technologies that come out of the printer

Fraunhofer-Gesellschaft's German-Polish High-Performance Center brings additive manufacturing to medical technology – first demonstrators will already be presented by the end of 2021.

Enhanced safety and precision with semi-automatic milling systems

Enhanced safety and precision with semi-automatic milling systems

Professor Dr Henning Windhagen is a great fan of semi-automatic systems in the OR that help with implants but leave the surgeon in the driver’s seat.

Neurofeedback to help those who wear prostheses

Neurofeedback to help those who wear prostheses

Transmitting sensory signals from prostheses to the nervous system helps leg amputees to perceive prosthesis as part of their body.

Bionic touch does not remap the brain

Bionic touch does not remap the brain

Neuroscientists have demonstrated that the brain does not remap itself even with long-term bionic limb use, posing challenges for the development of realistic prosthetic limbs.

Integrate micro chips for electronic skin

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

Bioelectronic implant could prevent opioid deaths

Bioelectronic implant could prevent opioid deaths

Researchers are developing a device that can sense the effects of a potentially fatal level of ingested opioids and deliver a life-saving dose of naloxone.

Popular articles

Subscribe to Newsletter