Researchers “knocked out” the omega-1 ribonuclease protein using...
Researchers “knocked out” the omega-1 ribonuclease protein using CRISPR/Cas9 and found that it greatly reduced the impact of schistosomiasis.
Source: GW School of Medicine and Health Sciences

CRISPR/Cas9 shown to limit impact of parasitic diseases

For the first time, researchers at the George Washington University (GW), together with colleagues at institutes in Thailand, Australia, the U.K. and the Netherlands, and more, have successfully used the gene-editing tool CRISPR/Cas9 to limit the impact of parasitic worms responsible for schistosomiasis and for liver fluke infection, which can cause a diverse spectrum of human disease including bile duct cancer.

“The genes we ‘knocked out’ using CRISPR/Cas9 resulted in markedly diminished symptoms of infection in our animal models,” said Paul Brindley, Ph.D., professor of microbiology, immunology, and tropical medicine at the GW School of Medicine and Health Sciences, and lead author. “Our research also showed that this revolutionary new biomedical procedure—CRISPR/Cas9—can be adapted to study helminth parasites, which are a major public health problem in tropical climates.”

CRISPR/Cas9 is a new technology that allows researchers to precisely target and deactivate the genetic information needed to produce a particular protein. While the tool has been used in other species before, it was unknown if it could be applied to Schistosoma mansoni and Opisthorchis viverrini, the 

Photo
Researchers used CRISPR/Cas9 to deactivate the gene that codes for granulin and create parasites that can only produce very little of the protein, leading to markedly reduced symptoms of liver fluke infection.
Source: GW School of Medicine and Health Sciences

Schistosomiasis can cause serious health problems, including damage to the liver and kidneys, infertility and bladder cancer. The freshwater worms S. mansoni enter the human body by burrowing into the skin; once in the bloodstream, they move to various organs where they rapidly start to reproduce. Their eggs release several molecules, including a protein known as omega-1 ribonuclease, which can damage the surrounding tissues. Brindley and his research team “knocked out” this protein using CRISPR/Cas9 and found that it greatly reduced the impact of the disease.

Liver fluke infection can cause a type of liver cancer called bile duct cancer, triggered by the presence of the worm O. viverrini. This parasite is transmitted through traditional Southeast Asian cuisines using uncooked or undercooked fish. Once inside the body, the parasite settles in the human liver and secretes a protein known as granulin that may encourage liver cells to multiply, raising the risk for cancer. Brindley and his research team used CRISPR/Cas9 to deactivate the gene that codes for granulin and create parasites that can only produce very little of the protein, leading to markedly reduced symptoms of liver fluke infection.

“These neglected tropical diseases affect more than a quarter of a billion people primarily living in Southeast Asia, sub-Saharan Africa, and Latin America,” said Brindley. “CRISPR/Cas9 is a tool that may be used to limit the impact of these infections. As we work to better understand how these parasites invade and damage our bodies through this new technology, we will find new ideas for treatment and disease control.”

Subscribe to our newsletter

Related articles

New antibacterial material prevents infections

New antibacterial material prevents infections

Researchers have developed a novel antibacterial material that can fulfill a wide range of applications as a dressing for wounds, by preventing infection and thus facilitating treatment and healing.

Next step in creating lung organoids

Next step in creating lung organoids

Realistic mini-lungs, grown in lab dishes, feature all cell types that make up the human organ, allowing for “Phase 0” testing of new treatments for respiratory diseases.

Device diagnoses Covid-19 from saliva samples

Device diagnoses Covid-19 from saliva samples

Engineers have designed a device that can detect SARS-CoV-2 from a saliva sample in about an hour. They showed that the diagnostic is just as accurate as the PCR tests now used.

Microfluidics: efficiently smuggling drugs into cells

Microfluidics: efficiently smuggling drugs into cells

Progressive Mechanoporation makes it possible to mechanically disrupt the membranes of cells for a short time period and let drugs or genes inside cells.

CRISPRoff offers unrivaled control of epigenetic inheritance

CRISPRoff offers unrivaled control of epigenetic inheritance

Scientists have figured out how to modify CRISPR’s basic architecture to extend its reach beyond the genome and into what’s known as the epigenome.

Designing better antibody drugs with machine learning

Designing better antibody drugs with machine learning

Artificial intelligence could help to optimise the development of antibody drugs. This leads to active substances with improved properties, also with regard to tolerability in the body.

Synthetic mucins mimic the structure of naturally occurring mucins

Synthetic mucins mimic the structure of naturally occurring mucins

Researchers have created polymers that replicate the structure of mucins, the molecules that give mucus its unique antimicrobial properties.

Genome-editing tool TALEN outperforms CRISPR-Cas9

Genome-editing tool TALEN outperforms CRISPR-Cas9

Experiments revealed that TALEN is up to five times more efficient than CRISPR-Cas9 in parts of the genome that are densely packed.

CRISPR to cure sickle cell disease

CRISPR to cure sickle cell disease

University of Illinois Chicago is one of the U.S. sites participating in clinical trials to cure severe red blood congenital diseases such as sickle cell anemia or Thalassemia by safely modifying the DNA of patients’ blood cells.

Popular articles

Subscribe to Newsletter