Image shows six devices with biosensors to detect whether a cancer cell is...
Image shows six devices with biosensors to detect whether a cancer cell is alive when it passes through a tiny hole for fluids. The devices fit on a 3-inch wide piece of glass.
Source: Zhongtian Lin

Device tests if targeted chemotherapy is working

Rutgers researchers have created a device that can determine whether targeted chemotherapy drugs are working on individual cancer patients. The portable device, which uses artificial intelligence and biosensors, is up to 95.9 percent accurate in counting live cancer cells when they pass through electrodes.

“We built a portable platform that can predict whether patients will respond positively to targeted cancer therapy,” said senior author Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering in the School of Engineering at Rutgers University–New Brunswick. “Our technology combines artificial intelligence and sophisticated biosensors that handle tiny amounts of fluids to see if cancer cells are sensitive or resistant to chemotherapy drugs.”

The device provides immediate results and will allow for more personalized interventions for patients as well as better management and detection of the disease. It can rapidly analyze cells without having to stain them, allowing for further molecular analysis and instantaneous results. Current devices rely on staining, limiting the characterization of cells. “We envision using this new device as a point-­of-­care diagnostic tool for assessing patient response and personalization of therapeutics,” the study says.

Treatment of cancer patients often requires drugs that can kill tumor cells, but chemotherapy destroys both tumor cells and healthy cells, causing side effects such as hair loss and gastrointestinal problems.

Co-author Joseph R. Bertino, a resident researcher at Rutgers Cancer Institute of New Jersey and professor at Rutgers Robert Wood Johnson Medical School, and his team previously developed a therapeutic approach that targets cancer cells, such as those in B­-cell lymphoma, multiple myeloma and epithelial carcinomas. It binds a chemotherapy drug to an antibody so only tumor cells are targeted, and minimizes interaction with healthy cells. Patients will respond positively to this therapy if their tumor cells generate a protein called matriptase. Many patients will benefit while the side effects from standard chemotherapy are minimized. “Novel technologies like this can really have a positive impact on the standard-of-care and result in cost-savings for both healthcare providers and patients,” Bertino said.

The Rutgers team tested their new device using cancer cell samples treated with different concentrations of a targeted anti­cancer drug. The device detects whether a cell is alive based on the shift in its electrical properties as it passes through a tiny fluidic hole. The next step is to perform tests on tumor samples from patients. The researchers hope the device will eventually be used to test cancer therapies on samples of patient tumors before treatment is administered.

Subscribe to our newsletter

Related articles

Scientists model heart attack on a chip

Scientists model heart attack on a chip

The chip is capable of precisely controlling oxygen and nutrient levels, and allowing observation of cell behavior in real time.

Lab-on-a-chip detects cancer less invasively

Lab-on-a-chip detects cancer less invasively

A new ultrasensitive diagnostic device could allow doctors to detect cancer quickly from a droplet of blood or plasma, leading to timelier interventions and better outcomes for patients.

Huge potential of human - AI collaboration

Huge potential of human - AI collaboration

AI is increasingly being used in medicine to support human expertise. A study has now illustrated the enormous potential of human/computer collaboration.

Lung cancer: AI could predict risk of recurrence

Lung cancer: AI could predict risk of recurrence

Computer scientists working with pathologists have trained an AI tool to determine which patients with lung cancer have a higher risk of their disease coming back after treatment.

Nanotechnology provides rapid visual detection of COVID-19

Nanotechnology provides rapid visual detection of COVID-19

Scientists have developed an experimental diagnostic test for COVID-19 that can visually detect the presence of the virus in 10 minutes.

AI model accurately classifies colorectal polyps

AI model accurately classifies colorectal polyps

An AI model for automated classification of colorectal polyps could benefit cancer screening programs by improving efficiency, reproducibility, and accuracy.

Smart insoles unlock the secrets of your sole

Smart insoles unlock the secrets of your sole

Researchers at Stevens Institute of Technology have developed an AI-powered, smart insole that instantly turns any shoe into a portable gait-analysis laboratory.

AI taps human wisdom for better cancer diagnosis

AI taps human wisdom for better cancer diagnosis

A new system combining artificial intelligence with human knowledge promises faster and more accurate cancer diagnosis.

A pill-sized heating device for diagnostic testing

A pill-sized heating device for diagnostic testing

Researchers have developed a ‘heater’ — about the size of a pill tablet — that regulates the temperature of biological samples through the different stages of diagnostic testing.

Popular articles