Nanocrystal cellulose aerogel.
Nanocrystal cellulose aerogel.
Source: Clare Kiernan/UBC

From foam to bone: healthy bone implants

Researchers from the University of British Columbia and McMaster University have developed what could be the bone implant material of the future: an airy, foamlike substance that can be injected into the body and provide scaffolding for the growth of new bone.

It’s made by treating nanocrystals derived from plant cellulose so that they link up and form a strong but lightweight sponge – technically speaking, an aerogel – that can compress or expand as needed to completely fill out a bone cavity. “Most bone graft or implants are made of hard, brittle ceramic that doesn’t always conform to the shape of the hole, and those gaps can lead to poor growth of the bone and implant failure,” said study author Daniel Osorio, a PhD student in chemical engineering at McMaster. “We created this cellulose nanocrystal aerogel as a more effective alternative to these synthetic materials.”

For their research, the team worked with two groups of rats, with the first group receiving the aerogel implants and the second group receiving none. Results showed that the group with implants saw 33 per cent more bone growth at the three-week mark and 50 per cent more bone growth at the 12-week mark, compared to the controls. “These findings show, for the first time in a lab setting, that a cellulose nanocrystal aerogel can support new bone growth,” said study co-author Emily Cranston, a professor of wood science and chemical and biological engineering who holds the President’s Excellence Chair in Forest Bio-products at UBC. She added that the implant should break down into non-toxic components in the body as the bone starts to heal.

The innovation can potentially fill a niche in the $2-billion bone graft market in North America, said study co-author Kathryn Grandfield, a professor of materials science and engineering, and biomedical engineering at McMaster who supervised the work. “We can see this aerogel being used for a number of applications including dental implants and spinal and joint replacement surgeries,” said Grandfield. “And it will be economical because the raw material, the nanocellulose, is already being produced in commercial quantities.”

The researchers say it will be some time before the aerogel makes it out of the lab and into the operating room. “This summer, we will study the mechanisms between the bone and implant that lead to bone growth,” said Grandfield. “We’ll also look at how the implant degrades using advanced microscopes. After that, more biological testing will be required before it is ready for clinical trials.”

Subscribe to our newsletter

Related articles

‘Smart’ implant coatings to nip infections in the bud

‘Smart’ implant coatings to nip infections in the bud

Physicists from University of Augsburg have developed a "smart" coating that is particularly toxic when bacteria are present in its environment.

Groundwork for patient-specific 3D printed meniscus

Groundwork for patient-specific 3D printed meniscus

Researchers have developed a novel methodology to provide non-invasive analysis of meniscal implants.

Bioelectronic implant could prevent opioid deaths

Bioelectronic implant could prevent opioid deaths

Researchers are developing a device that can sense the effects of a potentially fatal level of ingested opioids and deliver a life-saving dose of naloxone.

3D printed salt template for bone implants

3D printed salt template for bone implants

With the help of a 3D printed salt template, researchers have succeeded in producing magnesium scaffolds with structured porosity that are suitable for bioresorbable bone implants.

Circuit implants release painkillers inside the body

Circuit implants release painkillers inside the body

Researchers have developed biodegradable microresonators that could soon be used in implants to control the release of painkillers within tissue.

Prosthetics: sensors implanted for wireless control of muscle signal

Prosthetics: sensors implanted for wireless control of muscle signal

Researchers have successfully implanted sensors in three male patients following nerve transfers, to transmit biosignals for wireless control of robotic arms.

Wound healing with the power of nanofibers

Wound healing with the power of nanofibers

Scientists have now developed a new type of biomaterial that could help the healing of injuries, especially of severed nerve tracts.

Grow a better jawbone in your ribs

Grow a better jawbone in your ribs

Engineers have developed a technique to grow live bone to repair craniofacial injuries by attaching a 3D-printed bioreactor.

3D printing helps surgeons rebuild patients’ faces

3D printing helps surgeons rebuild patients’ faces

Scientists are using 3D technology to help rebuild the faces of cancer patients, those hurt in accidents and people born with complex facial deformities.

Popular articles