The genome-editing tool TALEN outperformed CRISPR-Cas9 in tightly packed DNA.
The genome-editing tool TALEN outperformed CRISPR-Cas9 in tightly packed DNA.
Source: Shutterstock/Solcan Design

Genome-editing tool TALEN outperforms CRISPR-Cas9

Researchers at University of Illinois at Urbana-Champaign used single-molecule imaging to compare the genome-editing tools CRISPR-Cas9 and TALEN. Their experiments revealed that TALEN is up to five times more efficient than CRISPR-Cas9 in parts of the genome, called heterochromatin, that are densely packed. Fragile X syndrome, sickle cell anemia, beta-thalassemia and other diseases are the result of genetic defects in the heterochromatin.

The study adds to the evidence that a broader selection of genome-editing tools is needed to target all parts of the genome, said Huimin Zhao, a professor of chemical and biomolecular engineering at the University of Illinois Urbana-Champaign who led the new research. “CRISPR is a very powerful tool that led to a revolution in genetic engineering,” Zhao said. “But it still has some limitations.”

CRISPR is a bacterial molecule that detects invading viruses. It can carry one of several enzymes, such as Cas-9, that allow it to cut viral genomes at specific sites. TALEN also scans DNA to find and target specific genes. Both CRISPR and TALEN can be engineered to target specific genes to fight disease, improve crop plant characteristics or for other applications.

Zhao and his colleagues used single-molecule fluorescence microscopy to directly observe how the two genome-editing tools performed in living mammalian cells. Fluorescent-labeled tags enabled the researchers to measure how long it took CRISPR and TALEN to move along the DNA and to detect and cut target sites.

“We found that CRISPR works better in the less-tightly wound regions of the genome, but TALEN can access those genes in the heterochromatin region better than CRISPR,” Zhao said. “We also saw that TALEN can have higher editing efficiency than CRISPR. It can cut the DNA and then make changes more efficiently than CRISPR.”

TALEN was as much as five times more efficient than CRISPR in multiple experiments. The findings will lead to improved approaches for targeting various parts of the genome, Zhao said. “Either we can use TALEN for certain applications, or we could try to make CRISPR work better in the heterochromatin,” he said.

The researchers report their findings in the journal Nature Communications.

Subscribe to our newsletter

Related articles

Using CRISPR to knock down gene messages

Using CRISPR to knock down gene messages

Researchers have harnessed CRISPR technology to target gene messages (messenger RNA) involved in early vertebrate

CRISPR: Giving Cas9 an ‘on’ switch

CRISPR: Giving Cas9 an ‘on’ switch

Researchers have given CRISPR-Cas9 an “on” switch, allowing users to keep the #Cas9 gene editor turned off in all cells except its designated target.

CRISPRoff offers unrivaled control of epigenetic inheritance

CRISPRoff offers unrivaled control of epigenetic inheritance

Scientists have figured out how to modify CRISPR’s basic architecture to extend its reach beyond the genome and into what’s known as the epigenome.

Designing better antibody drugs with machine learning

Designing better antibody drugs with machine learning

Artificial intelligence could help to optimise the development of antibody drugs. This leads to active substances with improved properties, also with regard to tolerability in the body.

CRISPR to cure sickle cell disease

CRISPR to cure sickle cell disease

University of Illinois Chicago is one of the U.S. sites participating in clinical trials to cure severe red blood congenital diseases such as sickle cell anemia or Thalassemia by safely modifying the DNA of patients’ blood cells.

Using CRISPR to detect diseases

Using CRISPR to detect diseases

Researchers present sensor prototype that can rapidly, precisely, and cost-effectively measure molecular signals for cancer.

Revolutionising CRISPR-Cas

Revolutionising CRISPR-Cas

Researchers have refined the famous CRISPR-Cas method. Now, for the very first time, it is possible to modify dozens, if not hundreds, of genes in a cell simultaneously.

CRISPR-powered device detects genetic mutations in minutes

CRISPR-powered device detects genetic mutations in minutes

Engineers have combined CRISPR with electronic transistors made from graphene to create a new hand-held device that can detect specific genetic mutations in a matter of minutes.

CasX, the smaller CRISPR gene editor

CasX, the smaller CRISPR gene editor

Scientists find new and smaller gene editor: the new gene-editing protein, CasX, may give CRISPR-Cas9 a run for its money.

Popular articles

Subscribe to Newsletter