Human textiles to repair blood vessels

The leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates. To open up new research avenues into this serious public health problem, Inserm researcher Nicolas L’Heureux and his team at the Tissue Bioengineering unit (Inserm/Université de Bordeaux) are developing “human textiles” from collagen in order to repair damaged blood vessels.

Photo
The researchers use extracellular matrix sheets to make yarn – a bit like that used to make clothing fabric.
Source: Nicolas L’Heureux

What if we could replace a patient’s damaged blood vessels with brand new ones produced in a laboratory? This is the challenge set by Inserm researcher Nicolas L’Heureux, who is working on the human extracellular matrix – the structural support of human tissues that is found around practically all of the body’s cells.

In a study published in Acta Biomaterialia, L’Heureux and his colleagues describe how they have cultivated human cells in the laboratory to obtain extracellular matrix deposits high in collagen – a structural protein that constitutes the mechanical scaffold of the human extracellular matrix. “We have obtained thin but highly robust extracellular matrix sheets that can be used as a construction material to replace blood vessels”, explains L’Heureux.

The researchers then cut these sheets to form yarn – a bit like that used to make fabric for clothing. “The resulting yarn can be woven, knitted or braided into various forms. Our main objective is to use this yarn to make assemblies which can replace the damaged blood vessels”, adds L’Heureux.

Photo
Made entirely from biological material, these blood vessels would have the advantage of being well tolerated by all patients.
Source: Nicolas L’Heureux

Made entirely from biological material, these blood vessels would also have the advantage of being well-tolerated by all patients. Given that collagen does not vary from individual to individual, it is not expected that the body will consider these vessels as foreign bodies to be rejected.

The researchers would now like to refine their techniques used to produce these “human textiles” before moving on to animal testing, in order to validate this last hypothesis. If these are conclusive, this could lead to clinical trials.

Subscribe to our newsletter

Related articles

A microfluidic chip system as alternative to animal experiments

A microfluidic chip system as alternative to animal experiments

Since mid-2019, the Fraunhofer IBMT has been developing an analysis platform as an alternative to animal experiments in drug development.

Scientists model heart attack on a chip

Scientists model heart attack on a chip

The chip is capable of precisely controlling oxygen and nutrient levels, and allowing observation of cell behavior in real time.

Using tumor-on-a-chip to find cancer drugs

Using tumor-on-a-chip to find cancer drugs

Researchers have developed a 'tumor-on-a-chip' that can better mimic the environment inside the body, paving the way for improved screening of potential cancer fighting drugs.

Studying heart cells with nanovolcanoes

Studying heart cells with nanovolcanoes

A new microelectrode that penetrates the cell membrane unassisted and, when placed in an array, allows scientists to follow electrical activity as it spreads through tissues.

Teaching an organ-on-a-chip to see

Teaching an organ-on-a-chip to see

Organ-on-a-chip technology has the potential to revolutionize drug development. Researchers have succeeded in putting various types of tissue onto chips.

Wearable offers new option for monitoring heart health

Wearable offers new option for monitoring heart health

An invention may turn one of the most widely used materials for biomedical applications into wearable devices to help monitor heart health.

Your new lab partner: the robot scientist

Your new lab partner: the robot scientist

Researchers have built an intelligent mobile robot scientist that can work 24-7, carrying out experiments by itself.

World first in 3D printed self-expandable stents

World first in 3D printed self-expandable stents

Researchers from CSIRO have made it possible to 3D print tailor-made stents, a critical biomedical device used to treat narrow or blocked arteries.

Smart algorithm analyses whole brain vasculature

Smart algorithm analyses whole brain vasculature

Scientists have developed a technique for visualising the structures of all the brain's blood vessels including any pathological changes.

Popular articles