A microneedle less than a millimeter in length is used to inject a natural and...
A microneedle less than a millimeter in length is used to inject a natural and biodegradable polymer material into a structure in the eye. The material forms a hydrogel that holds open a pathway to release pressure from the eye.
Source: Gary Meek, Georgia Tech

Hydrogel: an option for glaucoma treatment?

Researchers have developed a potential new treatment for the eye disease glaucoma that could replace daily eyedrops and surgery with a twice-a-year injection to control the buildup of pressure in the eye. The researchers envision the injection being done as an office procedure that could be part of regular patient visits.

The possible treatment, which could become the first non-drug, non-surgical, long-acting therapy for glaucoma, uses the injection of a natural and biodegradable material to create a viscous hydrogel — a water-absorbing crosslinked polymer structure — that opens an alternate pathway for excess fluid to leave the eye.

“The holy grail for glaucoma is an efficient way to lower the pressure that doesn’t rely on the patient putting drops in their eyes every day, doesn’t require a complicated surgery, has minimal side effects, and has a good safety profile,” said Ross Ethier, professor and Georgia Research Alliance Lawrence L. Gellerstedt Jr. Eminent Scholar in Bioengineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “I am excited about this technique, which could be a game-changer for the treatment of glaucoma.”

As many as 75 million people worldwide have glaucoma, which is the leading cause of irreversible blindness. Glaucoma damage is caused by excess pressure in the eye that injures the optic nerve. Current treatments attempt to reduce this intraocular pressure through the daily application of eyedrops, or through surgery or implantation of medical devices, but these treatments are often unsuccessful.

To provide an alternative, Ethier teamed up with Mark Prausnitz, professor and J. Erskine Love Jr. Chair in the School of Chemical and Biomolecular Engineering at Georgia Tech, to use a tiny hollow needle to inject a polymer preparation into a structure just below the surface of the eye called the suprachoroidal space (SCS). Inside the eye, the material chemically crosslinks to form the hydrogel, which holds open a channel in the SCS that allows aqueous humor from within the eye to drain out of the eye through the alternative pathway.

There are normally two pathways for the aqueous humor fluid to leave the eye. The dominant path is through a structure known as the trabecular meshwork, which is located at the front of the eye. The lesser pathway is through the SCS, which normally has only a very small gap. In glaucoma, the dominant pathway is blocked, so to lessen pressure, treatments are created to open the lesser pathway enough to let the aqueous humor flow out.

In this research, the hydrogel props open the SCS path. A hollow microneedle less than a millimeter long is used to inject a droplet (about 50 microliters) of the hydrogel-precursor material. That gel structure can keep the SCS pathway open for a period of months. “We inject a viscous material and keep it at the site of the injection at the interface between the back of the eye and the front of the eye where the suprachoroidal space begins,” Prausnitz said. “By opening up that space, we tap a pathway that would not otherwise be utilized efficiently to remove liquid from the eye.”

The injection would take just a few minutes, and would involve a doctor making a small injection just below the surface of the eye in combination with numbing and cleaning the injection site. In the study, the researchers, including veterinary ophthalmologist and first author J. Jeremy Chae, did not observe significant inflammation resulting from the procedure.

The treatment could replace daily eye drops and surgery with a twice-a-year...
The treatment could replace daily eye drops and surgery with a twice-a-year injection to control the buildup of pressure in the eye.
Source: Rob Felt, Georgia Tech

The pressure reduction was sustained for four months. The researchers are now working to extend that time by modifying the polymer material — hyaluronic acid — with a goal of providing treatment benefits for at least six months. That would coincide with the office visit schedule of many patients. “If we can get to a twice-a-year treatment, we would not disrupt the current clinical process,” Prausnitz said. “We believe the injection could be done as an office procedure during routine exams that the patients are already getting. Patients may not need to do anything to treat their glaucoma until their next office visit.”

Beyond extending the time between treatments, the researchers will need to demonstrate that the injection can be repeated without harming the eye. The procedure will also have to be tested in other animals before moving into human trials. “The idea of having a ‘one-and-done’ treatment that lasts for six months would be particularly helpful for those whose access to healthcare is non-optimal,” Ethier said. “Having a long-acting therapy would have an additional advantage during times of pandemic or other disruption when access to healthcare is more difficult.”

The research was published in Advanced Science.

Subscribe to our newsletter

Related articles

Hydrogel contact lenses for therapeutic use

Hydrogel contact lenses for therapeutic use

Researchers at the Terasaki Institute have developed prototypes of contact lenses that can assist with tear sampling for diagnostic purposes.

Smart contact lens to combat eye deficiencies

Smart contact lens to combat eye deficiencies

Researchers have developed an artificial iris integrated inside a contact lens that can automatically set the proper pupil size to achieve optimal focus and depth of field.

3D printed hydrogels to be used in cancer immunotherapy

3D printed hydrogels to be used in cancer immunotherapy

The new 3D hydrogels provide high rates of cell proliferation, as they mimic lymph nodes, where T-cells reproduce in vivo.

Robotic thread to clear stroke clots

Robotic thread to clear stroke clots

Engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labrynthine vasculature of the brain.

Microscopy and VR illuminate new ways to treat disease

Microscopy and VR illuminate new ways to treat disease

Researchers are pairing a nanoscale imaging technique with virtual reality technology to create a method that allows researchers to “step inside” their biological data.

Ingestible pill monitors the stomach for up to a month

Ingestible pill monitors the stomach for up to a month

Engineers have designed an ingestible pill that quickly swells to the size of a soft, squishy ping-pong ball big enough to stay in the stomach for an extended period of time.

Nanorobots propel through the eye

Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye.

Eye implant could help prevent blindness

Eye implant could help prevent blindness

Electrical and medical engineering researchers create device that makes it easier to measure pressure inside the eyes of people at risk for glaucoma.

‘Smart lens’ monitors glucose and other medical conditions

‘Smart lens’ monitors glucose and other medical conditions

New contact lenses allow to correct vision, monitor glucose and medical conditions.

Popular articles