Graphic of heart and injectable hydrogel.
Graphic of heart and injectable hydrogel.
Source: CÚRAM, National University of Ireland Galway

Hydrogel injection may repair heart muscle damagage

Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at NUI Galway, and BIOFORGE Lab, at the University of Valladolid in Spain, have developed an injectable hydrogel that could help repair and prevent further damage to the heart muscle after a heart attack.

Myocardial infarction or heart disease is a leading cause of death due to the irreversible damage caused to the heart muscle (cardiac tissue) during a heart attack. The regeneration of cardiac tissue is minimal so that the damage caused cannot be repaired by itself. Current treatments lack an effective method to prevent death and subsequent cardiac tissue repair following a heart attack.

"This project involved the development and testing of an elastin-based hydrogel derived from a naturally occurring biomaterial in the human body", explains Professor Abhay Pandit, Scientific Director of CÚRAM at NUI Galway and project lead. The hydrogel is based on a family of unique biomaterials, called elastin-like recombinamers, that BIOFORGE-UVa had developed in the search for advanced hydrogels for regenerative medicine. "The hydrogel was developed to mimic the environment around the heart following an infarction and then customised to have the ability to protect and promote regeneration of the cardiac tissue", says Professor Pandit.

The therapeutic effect of multiple injections of this hydrogel into the cardiac tissue was assessed during the first-ever preclinical study of its kind, demonstrating its efficacy for cardiac tissue remodelling following a heart attack.

The international research team, which included researchers from Ireland, Spain, Sweden, France and Italy, were able to show that if their hydrogel was injected into the heart muscle shortly after a heart attack, it resulted in less fibrosis (scarring of the cardiac tissue) and an increase in the generation of new blood vessels in the area. They were also able to observe the rise in the preservation and survival of cardiomyocytes, a type of cell that allows the heart to beat, in the affected area.

Professor Abhay Pandit added: "This project demonstrates the efficacy of a unique biomaterial-only system able to induce a positive healing effect on cardiac tissue following a heart attack event. The functional benefits obtained by the timely injection of the hydrogel supports and highlights the potential use of this treatment in the clinic. The next step will be to develop a prototype for a delivery system for the hydrogel."

Professor Mark Da Costa, Cardiothoracic Surgeon, College of Medicine, Nursing and Health Sciences, NUI Galway and senior co-author of the study, said: "We employed a model to specifically look at a type of heart attack that has increased in incidence and is not often treated until the acute phase resolves. Scar tissue that forms after the heart attack often remodels negatively, causing future problems like heart failure. The timely injection of this hydrogel appears to change the way the heart muscle heals after a heart attack. There is a significant positive histological, biological and functional recovery of the injured heart muscle. Work is progressing now to deliver this to the sites of injury in different clinical settings and will be followed with translation into a clinical trial.”

The research was published in Science Translational Medicine.

Subscribe to our newsletter

Related articles

Blood vessels grow synthetic tissue model

Blood vessels grow synthetic tissue model

Researchers have developed a cell culture system in which a functional blood vessel system is able to grow within a framework made of synthetic material.

Skeletal scaffold supports bone cells

Skeletal scaffold supports bone cells

3D models of bone formation provide a tool for tissue engineering, biomedical research and drug testing.

Hydrogel protects heart from post-op adhesions

Hydrogel protects heart from post-op adhesions

Researchers have designed a device to safely and accurately spray the hydrogel inside the area where open heart surgery is being performed.

Hydrogel can repair tears in human tissue

Hydrogel can repair tears in human tissue

Scientists have developed an injectable gel that can attach to various kinds of soft internal tissues and repair tears resulting from an accident or trauma.

Shape-changing 4D materials hold promise for bioengineering

Shape-changing 4D materials hold promise for bioengineering

New hydrogel-based materials that can change shape in response to psychological stimuli, such as water, could be the next generation of materials used to bioengineer tissues and organs.

Lasers and molecular tethers enable tissue engineering

Lasers and molecular tethers enable tissue engineering

Researchers have used lasers and molecular tethers to create perfectly patterned platforms for tissue engineering.

Understanding the utility of plasmas

Understanding the utility of plasmas

Researchers aim to better explain the way plasmas interact with biological materials to help pave the way for plasma use in wound healing and cancer therapy.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Studying heart cells with nanovolcanoes

Studying heart cells with nanovolcanoes

A new microelectrode that penetrates the cell membrane unassisted and, when placed in an array, allows scientists to follow electrical activity as it spreads through tissues.

Popular articles

Subscribe to Newsletter