Tumor-on-a-chip platform, used as a predictive model for potential treatment...
Tumor-on-a-chip platform, used as a predictive model for potential treatment options.
Source: Wake Forest Baptist Medical Center

Immunotherapy response studied in body-on-a-chip models

Wake Forest researchers and clinicians are using patient-specific tumor 'organoid' models as a preclinical companion platform to better evaluate immunotherapy treatment for appendiceal cancer, one of the rarest cancers affecting only 1 in 100,000 people. Immunotherapies, also known as biologic therapies, activate the body's own immune system to control, and eliminate cancer.

Appendiceal cancer is historically resistant to systemic chemotherapy, and the effect of immunotherapy is essentially unknown because clinical trials are difficult to perform due to lack of adequate patient numbers, resulting in a lack of data and limited research models.

Researchers at the Wake Forest Organoid Research Center (WFORCE), a joint venture between the Wake Forest Institute for Regenerative Medicine (WFIRM), and the Wake Forest Comprehensive Cancer Center, were the first to create appendiceal cancer organoids to use as a predictive model for potential treatment options (published 2018). The Comprehensive Cancer Center is a major high volume center with a global reputation in the treatment of appendiceal cancer.

These cancer organoids are part of WFIRM's "Body-on-a-Chip" system that allows scientists to engineer the organoids, or human tissue equivalents, that function in a very similar manner as actual human tissues and organs.

In this new study, published in Clinical Cancer Research, their results indicate that various types immunotherapies tested on the organoids can potentially support treatment decisions and can achieve personalized results, identifying beneficial treatments while sparing patients from harmful side effects of drugs for which they will obtain no benefit.

"For this study we reconstructed patients' tumors as organoids, supercharged with a built-in immune system directly obtained from the patient," said senior author Konstantinos I. Votanopoulos, MD, PhD, professor of surgery at the Comprehensive Cancer Center and co-director of WFORCE. "In this way we created a personalized interface to study how effective the immunotherapy drugs are in activating a patient's own immune system to kill the cancer. This platform is breaking new ground for appendiceal cancer, and it can also be applied in research for other rare cancers where preclinical models are lacking."

This research study utilizes the WFIRM's "Body-on-a-Chip" system that allows scientists to engineer the organoids, or humanoid tissue equivalents, that function in a very similar manner as actual human organs.

Cells from tumor biopsies from 26 patients were obtained to grow the organoids - tiny, 3D tissue-like structures, in the lab that that mimic the cancerous tumors. The immune enhanced tumor organoids were treated with one of three immunotherapy drugs and then assessed for responsiveness.

"In the future, by verifying that that the tumor and its organoids behave in the same fashion, we could modify clinical trial design and optimize cost by targeting patients with organoids that have exhibited favorable results," Votanopoulos said.

Current strategies to understand tumor progression center on analyses of the tumor cells in isolation, but do not capture the interactions between a tumor and its surrounding space, known as the microenvironment or stroma. This leads to inaccuracies in predicting tumor progression and chemotherapy or immunotherapy response. Patient-derived tumor organoids are used as a testing and predicting platform to model diseases, evaluate efficacy and/or toxicity of new and existing drugs, and can be used to test environmental hazards.

Co-author Shay Soker, PhD, professor of regenerative medicine, said new technologies and biological models that improve prognostication will have a significant effect on patient mortality. "Using the organoids as a preclinical platform can lead to development of novel therapeutics which target and control tumor cells specifically, sparing healthy tissue from the side effects of chemotherapy and immunotherapy treatments," he said. "For rare cancers like appendiceal cancer, this technology can make a difference in overall quality of life for patients."

Subscribe to our newsletter

Related articles

Quantum physics helps destroy cancer cells

Quantum physics helps destroy cancer cells

Researchers have found a way to enhance radiation therapy using novel iodine nanoparticles.

Breast cancer-on-a-chip tests immunotherapy drugs

Breast cancer-on-a-chip tests immunotherapy drugs

Researchers have successfully designed and tested a system for rapid testing of large numbers of potential immunotherapy drugs.

Microbubbles deliver drugs directly to tumors

Microbubbles deliver drugs directly to tumors

Research has shown how microbubbles carrying powerful cancer drugs can be guided to the site of a tumour using antibodies.

Lung cancer: AI could predict risk of recurrence

Lung cancer: AI could predict risk of recurrence

Computer scientists working with pathologists have trained an AI tool to determine which patients with lung cancer have a higher risk of their disease coming back after treatment.

On the path to safe nanomedicine

On the path to safe nanomedicine

Scientists have now developed guidelines that should enable the safe development of nanoparticles for medical use.

MasSpec Pen shows promise in pancreatic cancer surgery

MasSpec Pen shows promise in pancreatic cancer surgery

The MasSpec Pen has shown to accurately identify tissues and surgical margins directly in patients and differentiate healthy and cancerous tissue from banked pancreas samples.

Microneedles for painless drug delivery

Microneedles for painless drug delivery

Researchers suggest using microneedles for immunotherapy due to the high abundance of immune cells under the skin. The aim is to vaccinate or treat different diseases with minimal invasiveness.

Cryomicroneedles for intradermal therapeutic cell delivery

Cryomicroneedles for intradermal therapeutic cell delivery

Scientists have developed a new generation of microneedles technology which allows the intradermal delivery of living cells in a minimally invasive manner.

Radiation therapy: 3D printed shields for protection

Radiation therapy: 3D printed shields for protection

To reduce tissue injury side effects from radiation therapy, researchers have developed 3D-printed gastrointestinal radioprotective devices that can be generated from patient CT scans.

Popular articles

Subscribe to Newsletter