E-skin equipped with an array of giant magneto resistance sensors.
Flexible electronic skin equipped with an array of giant magneto resistance sensors and complex electronics circuit designed and developed for sensing distribution of magnetic field.
Source: Masaya Kondo

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with external physical environment through numerous receptors interconnected with the nervous system. Scientists have been trying to transfer these features to artificial skin for a long time, aiming at robotic applications. Operation of robotic systems heavily rely on electronic and magnetic field sensing functionalities required for positioning and orientation in space. A lot of research and development have been devoted into implementation of these functionalities in a flexible and compliant form. The recent advancements in flexible sensors and organic electronics provided important prerequisites. These devices can operate on soft and elastic surfaces, whereas sensors perceive various physical properties and transmit them via readout circuits.

To closely replicate natural skin, it is however necessary to interconnect a big number of individual sensors. This challenging task became a major obstacle in realizing electronic skin. First demonstrations were based on an array of individual sensors addressed separately, which unavoidably resulted into a tremendous number of electronic connections. In order to reduce the necessary wiring, an important technology step had to be done. Namely, complex electronic circuits, such as shift registers, amplifiers, current sources and switches must be combined with individual magnetic sensors to achieve fully integrated devices.

Researchers from Dresden, Chemnitz and Osaka could overcome this obstacle in a pioneering active matrix magnetic sensor system. The sensor system consists of a 2 x 4 array of magnetic sensors, an organic bootstrap shift register, required for controlling the sensor matrix, and organic signal amplifiers. The special feature is that all electronic components are based on organic thin-film transistors and are integrated within a single platform. The researchers demonstrate that the system has a high magnetic sensitivity and can acquire the two-dimensional magnetic field distribution in real time. It is also very robust against mechanical deformation, such as bending, creasing or kinking. In addition to full system integration, the use of organic bootstrap shift registers is a very important development step towards active matrix electronic skin for robotic and wearable applications.

Prof. Dr. Oliver G. Schmidt, Director at the Leibniz Institute for Solid State and Materials Research Dresden and Dr. Daniil Karnaushenko on the next steps: “Our first integrated magnetic functionalities prove that thin-film flexible magnetic sensors can be integrated within complex organic circuits. Ultra-compliant and flexible nature of these devices is indispensable feature for modern and future applications such as soft robotics, implants and prosthetics. The next step is to increase the number of sensors per surface area as well as to expand the electronic skin to fit larger surfaces."

Subscribe to our newsletter

Related articles

Electronic skin reacts to pain like human skin

Electronic skin reacts to pain like human skin

Researchers have developed electronic artificial skin that reacts to pain just like real skin, opening the way to better prosthetics, smarter robotics and non-invasive alternatives to skin grafts.

Prosthetics: sensors implanted for wireless control of muscle signal

Prosthetics: sensors implanted for wireless control of muscle signal

Researchers have successfully implanted sensors in three male patients following nerve transfers, to transmit biosignals for wireless control of robotic arms.

Exceptional sensitive e-skin for prosthetics

Exceptional sensitive e-skin for prosthetics

Researchers have developed an e-skin that may soon have a sense of touch equivalent to, or better than, the human skin with the Asynchronous Coded Electronic Skin (ACES).

Spray coated tactile sensor for robots and prosthetics

Spray coated tactile sensor for robots and prosthetics

Robots will be able to conduct a wide variety of tasks as well as humans if they can be given tactile sensing capabilities.

Space station motors powerful robotic prosthetic leg

Space station motors powerful robotic prosthetic leg

Researchers have developed robotic prosthetic legs which use motors that were originally designed for use on the robotic arm of the ISS.

A deep learning e-skin decodes complex human motion

A deep learning e-skin decodes complex human motion

A deep learning powered single-strained electronic skin sensor can capture human motion from a distance.

A GPS-like system for flexible medical robots

A GPS-like system for flexible medical robots

Roboticists at the University of California San Diego have developed an affordable, easy to use system to track the location of flexible surgical robots inside the human body.

Robotics in care: The hospital bed of the future

Robotics in care: The hospital bed of the future

Physical strains are one of the main reasons for sick leaves and early retirement amongst nursing staff. Researchers are developing a robotic systems and sensor solutions for hospital beds.

Prostheses could alleviate amputees' phantom limb pain

Prostheses could alleviate amputees' phantom limb pain

New prosthetic technologies that stimulate the nerves could pave the way for prostheses that feel like a natural part of the body and reduce the phantom limb pain commonly endured by amputees.

Popular articles