E-skin equipped with an array of giant magneto resistance sensors.
Flexible electronic skin equipped with an array of giant magneto resistance sensors and complex electronics circuit designed and developed for sensing distribution of magnetic field.
Source: Masaya Kondo

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with external physical environment through numerous receptors interconnected with the nervous system. Scientists have been trying to transfer these features to artificial skin for a long time, aiming at robotic applications. Operation of robotic systems heavily rely on electronic and magnetic field sensing functionalities required for positioning and orientation in space. A lot of research and development have been devoted into implementation of these functionalities in a flexible and compliant form. The recent advancements in flexible sensors and organic electronics provided important prerequisites. These devices can operate on soft and elastic surfaces, whereas sensors perceive various physical properties and transmit them via readout circuits.

To closely replicate natural skin, it is however necessary to interconnect a big number of individual sensors. This challenging task became a major obstacle in realizing electronic skin. First demonstrations were based on an array of individual sensors addressed separately, which unavoidably resulted into a tremendous number of electronic connections. In order to reduce the necessary wiring, an important technology step had to be done. Namely, complex electronic circuits, such as shift registers, amplifiers, current sources and switches must be combined with individual magnetic sensors to achieve fully integrated devices.

Researchers from Dresden, Chemnitz and Osaka could overcome this obstacle in a pioneering active matrix magnetic sensor system. The sensor system consists of a 2 x 4 array of magnetic sensors, an organic bootstrap shift register, required for controlling the sensor matrix, and organic signal amplifiers. The special feature is that all electronic components are based on organic thin-film transistors and are integrated within a single platform. The researchers demonstrate that the system has a high magnetic sensitivity and can acquire the two-dimensional magnetic field distribution in real time. It is also very robust against mechanical deformation, such as bending, creasing or kinking. In addition to full system integration, the use of organic bootstrap shift registers is a very important development step towards active matrix electronic skin for robotic and wearable applications.

Prof. Dr. Oliver G. Schmidt, Director at the Leibniz Institute for Solid State and Materials Research Dresden and Dr. Daniil Karnaushenko on the next steps: “Our first integrated magnetic functionalities prove that thin-film flexible magnetic sensors can be integrated within complex organic circuits. Ultra-compliant and flexible nature of these devices is indispensable feature for modern and future applications such as soft robotics, implants and prosthetics. The next step is to increase the number of sensors per surface area as well as to expand the electronic skin to fit larger surfaces."

Subscribe to our newsletter

Related articles

Bionic touch does not remap the brain

Bionic touch does not remap the brain

Neuroscientists have demonstrated that the brain does not remap itself even with long-term bionic limb use, posing challenges for the development of realistic prosthetic limbs.

Ultra-thin sensitive strain sensors

Ultra-thin sensitive strain sensors

Researchers have developed a new range of nanomaterial strain sensors that are 10 times more sensitive when measuring minute movements, compared to existing technology.

3D printing strong and tough hydrogels

3D printing strong and tough hydrogels

Skin and cartilage are both strong and flexible – properties that are hard to replicate in artificial materials. But a new fabrication process brings lifelike synthetic polymers a step closer.

E-skin: Engineers imitate hands to make better sensors

E-skin: Engineers imitate hands to make better sensors

Researchers have developed “electronic skin” sensors capable of mimicking the dynamic process of human motion.

Electronic skin reacts to pain like human skin

Electronic skin reacts to pain like human skin

Researchers have developed electronic artificial skin that reacts to pain just like real skin, opening the way to better prosthetics, smarter robotics and non-invasive alternatives to skin grafts.

A deep learning e-skin decodes complex human motion

A deep learning e-skin decodes complex human motion

A deep learning powered single-strained electronic skin sensor can capture human motion from a distance.

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Implants: reconfigurable electronics promise innovations

Implants: reconfigurable electronics promise innovations

Medical implants of the future may feature reconfigurable electronic platforms that can morph in shape and size dynamically.

Prosthetics: sensors implanted for wireless control of muscle signal

Prosthetics: sensors implanted for wireless control of muscle signal

Researchers have successfully implanted sensors in three male patients following nerve transfers, to transmit biosignals for wireless control of robotic arms.

Popular articles