Lab-on-a-chip technology detects abnormalities in early pregnancy

Biomedical engineers Dr Marnie Winter and Professor Benjamin Thierry from UniSA’s Future Industries Institute (FII) and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (CBNS) are part of a team of researchers who have isolated fetal cells from maternal blood using a tiny microfluidic device, allowing for improved genetic testing.

Photo
The blood sample breakthrough good news for pregnant women.
Source: University of South Australia

Lab-on-a-chip (LOC) technology integrates laboratory functions on a chip ranging from a few millimetres to a few square centimetres. The special design of the device allows large volumes of blood to be screened, paving the way for an efficient, cheap and quick method of separating fetal cells from maternal blood cells. “We are hopeful that this device could result in a new, non-invasive prenatal diagnostic test able to detect a wide range of genetic abnormalities in early pregnancy from a simple blood sample,” Dr Winter says.

Currently, prenatal diagnostic tests involve an amniocentesis procedure or taking a sample of cells from the placenta (chorionic villus sampling), both of which carry a risk of inducing miscarriage. “From about five weeks into the pregnancy, fetal cells originating from the placenta can be found in a mother’s bloodstream. Using modern microfluidic technology, we can now isolate these extremely rare cells (about one in a million) from the mother’s white blood cells and collect them for genetic analysis,” she says.

The UniSA researchers, working in collaboration with Dr Majid Warkiani from the University of Technology Sydney and specialists from the Women’s and Children’s Hospital, SA Pathology and Repromed, adapted the device from one initially developed to isolate tumour cells from the blood of cancer patients. “Many pregnant women would be aware of the new tests based on circulating fetal DNA that – with a simple blood test – help determine the risk of having a baby with Down syndrome. These tests have revolutionised prenatal care, but they can only detect a small subset of genetic conditions and are not always accurate. We hope this LOC technology will be able to reliably detect a greater range of genetic abnormalities, providing more information to families and healthcare providers,” Dr Winter says.

Professor Thierry, who leads UniSA’s Bioengineering group, says there is significant scope to further develop the lab-on-a-chip concept. “We are collaborating with industry partners to translate this technology in routine clinical prenatal diagnostics and make it available in the future to screen low and medium-risk pregnancies,” he says.

Professor Emily Hilder, Director of UniSA’s FII, says: “This research breakthrough is testament to the cutting-edge technology being developed at the Future Industries Institute. UniSA is a leading player in LOC technology thanks to our ANFF-SA micro and nanofabrication facility at Mawson Lakes.”

Subscribe to our newsletter

Related articles

Organ-on-a-chip: Device simplifies study of blood cells

Organ-on-a-chip: Device simplifies study of blood cells

A simple innovation the size of a grain of sand means we can now analyse cells and tiny particles as if they were inside the human body.

Bringing magnetic resonance to fertility treatment

Bringing magnetic resonance to fertility treatment

EPFL spin-off Annaida is developing a magnetic resonance system that can detect the chemistry inside the tiniest living organisms.

A pill-sized heating device for diagnostic testing

A pill-sized heating device for diagnostic testing

Researchers have developed a ‘heater’ — about the size of a pill tablet — that regulates the temperature of biological samples through the different stages of diagnostic testing.

Lensless microscopy chip for diagnostic applications

Lensless microscopy chip for diagnostic applications

Researchers at the University of Connecticut have developed a lensless microscope that allows an observer to enjoy an enormous field of view.

A precision chip recreates blood-brain barrier

A precision chip recreates blood-brain barrier

Researchers at Georgia Tech have now developed a chip that accurately replicates its function using the human cells that form this important part of our anatomy.

Human textiles to repair blood vessels

Human textiles to repair blood vessels

Researchers are developing “human textiles” from collagen in order to repair damaged blood vessels.

Operating with precision

Operating with precision

Researchers at the University of Stuttgart have developed a miniature laboratory the size of the tip of a needle.

Using tumor-on-a-chip to find cancer drugs

Using tumor-on-a-chip to find cancer drugs

Researchers have developed a 'tumor-on-a-chip' that can better mimic the environment inside the body, paving the way for improved screening of potential cancer fighting drugs.

Sensor chip detects cancer biomarker in urine

Sensor chip detects cancer biomarker in urine

Researchers have used a chip-based sensor with an integrated laser to detect very low levels of a cancer protein biomarker in a urine sample.

Popular articles