The device, using Lego-like replaceable drug cartridges and powerful bluetooth...
The device, using Lego-like replaceable drug cartridges and powerful bluetooth low-energy, can target specific neurons of interest using drug and light for prolonged periods.
Source: Korea Advanced Institute of Science and Technology

Manipulating brain cells using the smartphone

A team of scientists in Korea and the United States have invented a device that can control neural circuits using a tiny brain implant controlled by a smartphone. The researchers believe the device can speed up efforts to uncover brain diseases such as Parkinson’s, Alzheimer’s, addiction, depression, and pain.

The device, using Lego-like replaceable drug cartridges and powerful bluetooth low-energy, can target specific neurons of interest using drug and light for prolonged periods. “The wireless neural device enables chronic chemical and optical neuromodulation that has never been achieved before,” said lead author Raza Qazi, a researcher with the Korea Advanced Institute of Science and Technology (KAIST) and University of Colorado Boulder.

Qazi said this technology significantly overshadows conventional methods used by neuroscientists, which usually involve rigid metal tubes and optical fibers to deliver drugs and light. Apart from limiting the subject’s movement due to the physical connections with bulky equipment, their relatively rigid structure causes lesion in soft brain tissue over time, therefore making them not suitable for long-term implantation. Though some efforts have been put to partly mitigate adverse tissue response by incorporating soft probes and wireless platforms, the previous solutions were limited by their inability to deliver drugs for long periods of time as well as their bulky and complex control setups.

To achieve chronic wireless drug delivery, scientists had to solve the critical challenge of exhaustion and evaporation of drugs. Researchers from KAIST and the University of Washington in Seattle collaborated to invent a neural device with a replaceable drug cartridge, which could allow neuroscientists to study the same brain circuits for several months without worrying about running out of drugs.

These ‘plug-n-play’ drug cartridges were assembled into a brain implant for mice with a soft and ultrathin probe (thickness of a human hair), which consisted of microfluidic channels and tiny LEDs (smaller than a grain of salt), for unlimited drug doses and light delivery.

Controlled with an elegant and simple user interface on a smartphone, neuroscientists can easily trigger any specific combination or precise sequencing of light and drug deliveries in any implanted target animal without need to be physically inside the laboratory. Using these wireless neural devices, researchers could also easily setup fully automated animal studies where behaviour of one animal could positively or negatively affect behaviour in other animals by conditional triggering of light and/or drug delivery. “This revolutionary device is the fruit of advanced electronics design and powerful micro and nanoscale engineering,” said Jae-Woong Jeong, a professor of electrical engineering at KAIST. “We are interested in further developing this technology to make a brain implant for clinical applications.”

Michael Bruchas, a professor of anesthesiology and pain medicine and pharmacology at the University of Washington School of Medicine, said this technology will help researchers in many ways. “It allows us to better dissect the neural circuit basis of behaviour, and how specific neuromodulators in the brain tune behaviour in various ways,” he said. “We are also eager to use the device for complex pharmacological studies, which could help us develop new therapeutics for pain, addiction, and emotional disorders.”

The researchers at the Jeong group at KAIST develop soft electronics for wearable and implantable devices, and the neuroscientists at the Bruchas lab at the University of Washington study brain circuits that control stress, depression, addiction, pain and other neuropsychiatric disorders. This global collaborative effort among engineers and neuroscientists over a period of three consecutive years and tens of design iterations led to the successful validation of this powerful brain implant in freely moving mice, which researchers believe can truly speed up the uncovering of brain and its diseases.

Subscribe to our newsletter

Related articles

Wearable helps to manage mental health

Wearable helps to manage mental health

Researchers are working to develop evidence-based services that will help manage students’ mental health.

Brain training app decoder improves users’ concentration

Brain training app decoder improves users’ concentration

A new 'brain training' game improves users' concentration. Scientists say this could provide a welcome antidote to the daily distractions that we face in a busy world.

Keeping watch on mental health

Keeping watch on mental health

Increasingly popular smart watches can be used to help clinicians identify early warning signs of mental health disorders and monitor the success of treatment.

Smartwatch turns into biochemical monitoring system

Smartwatch turns into biochemical monitoring system

Engineers have designed a thin adhesive film that could upgrade a consumer smartwatch into a powerful health monitoring system.

App monitors COVID-19 symptoms and mental health needs

App monitors COVID-19 symptoms and mental health needs

A new app that helps patients in self-isolation monitor for symptoms of COVID-19 and identify their mental health needs has been developed.

'CovIdentify' pits smartphones and wearables against coronavirus

'CovIdentify' pits smartphones and wearables against coronavirus

A research study seeks volunteers to provide data from smartphones, smartwatches and health surveys to help detect COVID-19.

A wearable device for brain monitoring

A wearable device for brain monitoring

Researchers have created a wearable technology that monitors brain activity and sends back data without benching a player or asking a trucker to pull over.

Update Apple Heart Study: Wearables can detect aFib

Update Apple Heart Study: Wearables can detect aFib

The clinical trial to determine whether a smartwatch app that analyzes pulse-rate data can screen for a heart-rhythm disorder has enrolled more than 400,000 participants.

Wearable respiration monitor built with children’s toy

Wearable respiration monitor built with children’s toy

Researchers have developed a wearable, disposable respiration monitor that provides high-fidelity readings on a continuous basis.

Popular articles