Microbubbles carry the anticancer drug to the site of the tumour. Antibodies...
Microbubbles carry the anticancer drug to the site of the tumour. Antibodies attached to the microbubbles are attracted to the growth hormone found around cancer cells. Once in situ, an unltrasound device is used to burst the bubbles, releasing the drug.
Source: Dr Sunjie Ye, University of Leeds

Microbubbles deliver drugs directly to tumors

University of Leeds research has shown how microbubbles carrying powerful cancer drugs can be guided to the site of a tumour using antibodies.

Microbubbles are small manufactured spheres half the size of a red blood cell - and scientists believe they can be used to transport drugs to highly specific locations within the body.  The lead authors, Drs Nicola Ingram and Laura McVeigh from the School of Medicine, describe how they targeted microbubbles through the use of a ‘navigational aid’ - antibodies attracted to the growth hormone found in high levels in the blood vessels supplying a tumour.

The antibodies were attached to the microbubbles. As a result of being attracted to the growth hormone, the microbubbles became concentrated at the site of the tumour. A pulse from an ultrasound device was used to burst open the microbubbles, and that released the anti-cancer agent.

The study was conducted on animals, which were used as a model to try and develop this technique for use in humans

Dr Ingram said being able to deliver anticancer drugs in a very targeted fashion would be a major advance in cancer therapy. She added: “One of the big problems with cancer drugs is that they are highly toxic to the rest of the body too. Microbubble technology could allow us to use these very powerful drugs with precision and that reduces the risk of the drug damaging healthy cells nearby. It is about finely focused drug delivery.

The study also revealed that by attaching the drug directly to the microbubbles allowed it to circulate in the body for longer, increasing delivery into the tumour - in effect making the drug more potent. As a result, the scientists were able to slow cancer growth with a much smaller drug dose.

As a result, the scientists were able to slow cancer growth with a much smaller drug dose. Professor Stephen Evans, head of the Molecular and Nanoscale Physics Group at Leeds and one of the paper’s authors, said: “The results of this study are exciting because we not only show the very precise and targeted way microbubbles can be guided to cancer sites but that the efficacy of drug delivery is substantially improved, opening the way to use highly toxic drugs to fight cancer, without the harmful side effects. “Put simply: you get more bang for your buck.”

The next stage of the research is to look at using microbubbles to develop targeted, triggered, delivery systems in patients for the diagnosis and treatment of advanced colorectal cancer, the third most common cancer in the UK.  

Co-author Professor Peter Simpson, Chief Scientific Officer at Medicines Discovery Catapult said: “Complex medicines have the potential to be the third wave of medicines, addressing patients’ problems which conventionally administered small molecules and monoclonal antibodies cannot. This project is a very encouraging example of exploring how using an advanced drug delivery technology could improve biodistribution, targeting and efficacy of a potentially toxic therapeutic.”

The findings were published in the journal Theranostics.

Subscribe to our newsletter

Related articles

Immunotherapy response studied in body-on-a-chip models

Immunotherapy response studied in body-on-a-chip models

Clinicians are using patient-specific tumor 'organoid' models as a preclinical companion platform to better evaluate immunotherapy treatment for appendiceal cancer.

Quantum physics helps destroy cancer cells

Quantum physics helps destroy cancer cells

Researchers have found a way to enhance radiation therapy using novel iodine nanoparticles.

Microneedles for painless drug delivery

Microneedles for painless drug delivery

Researchers suggest using microneedles for immunotherapy due to the high abundance of immune cells under the skin. The aim is to vaccinate or treat different diseases with minimal invasiveness.

Breast cancer-on-a-chip tests immunotherapy drugs

Breast cancer-on-a-chip tests immunotherapy drugs

Researchers have successfully designed and tested a system for rapid testing of large numbers of potential immunotherapy drugs.

Lung cancer: AI could predict risk of recurrence

Lung cancer: AI could predict risk of recurrence

Computer scientists working with pathologists have trained an AI tool to determine which patients with lung cancer have a higher risk of their disease coming back after treatment.

App monitors cancer patients' quality of life

App monitors cancer patients' quality of life

A team from the Universitat Politècnica de València (UPV) has developed a new mobile application that facilitates the continuous monitoring of the quality of life of cancer patients.

Pancreatic “organoids” mimic the real thing

Pancreatic “organoids” mimic the real thing

Studying these organoids could help researchers develop and test new treatments for pancreatic cancer.

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

AI assesses metastatic potential in skin cancers

AI assesses metastatic potential in skin cancers

Using a deep learning algorithm, researchers have developed a way to accurately predict which skin cancers are highly metastatic.

Popular articles

Subscribe to Newsletter