Microfluidics: efficiently smuggling drugs into cells

A new, patented method called Progressive Mechanoporation makes it possible to mechanically disrupt the membranes of cells for a short time period and let drugs or genes inside cells. In this way, researchers can test new therapies more easily than before.

Photo
Fluorescent soft beads passing through the narrowing channels of a biochip.
Source: MPZPM, Salvatore Girardo

Modern vaccines such as those against Sars-CoV-2 use tiny lipid spheres to transport genetic information into cells and let the body build up an immune defense against the virus. A team of scientists from Erlangen, Dresden, and London has now developed a completely new method to very efficiently deliver not only genes but also drugs and other substances into cells. The researchers from the Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen, the Technical University of Dresden, and The Institute of Cancer Research in London have named the method Progressive Mechanoporation.

Ruchi Goswami and Alena Uvizl were part of a team of scientists led by Salvatore Girardo (Erlangen) and Jörg Mansfeld (Dresden/London) who have developed the Progressive Mechanoporation. They have built a special polymer biochip that contains a series of microchannels. Each microchannel is narrower than the previous one, finally reaching a size more than ten times thinner than a human hair.

The scientists pass the cells through these channels, causing the cells to stretch more and more. The stretching creates pores in their cell membrane, allowing molecules to pass through these pores and get inside the cells. Once the cells have passed through the channels, the pores close again. The scientists demonstrated that Progressive Mechanoporation can deliver even very large proteins inside the cells. As a proof of concept the scientists used antibodies and CRISPR/Cas9, the genetic scissors whose discovery led to a last year’s Nobel Prize.  

The cells are stretched by passing through the nanochip. This creates pores in...
The cells are stretched by passing through the nanochip. This creates pores in their cell membrane, allowing molecules to pass through and get inside the cells.
Source: Ruchi Goswami

Potentially a new routine procedure for hospitals

"The big advantage of our method is that we can pass up to 10,000 cells per second through the chip," explains Salvatore Girardo, leader of the technology development and service group Lab-on-a-Chip at the MPZPM. At the same time, the method is very gentle. Compared to other techniques, very few cells get damaged.

The Progressive Mechanoporation method could be used in drug development and allow pharmaceutical companies to efficiently test new molecule candidates. In addition, the process can be easily automated. Jörg Mansfeld, a research group leader at the Biotechnology Center (BIOTEC) of TU Dresden and at The Institute of Cancer Research, London, adds: "I can envision that in the future, hospitals will be able to routinely examine and even treat patients' cells using Progressive Mechanoporation."

The reseeachers have published their work in the journal Lab on a Chip.

Subscribe to our newsletter

Related articles

Breast cancer-on-a-chip tests immunotherapy drugs

Breast cancer-on-a-chip tests immunotherapy drugs

Researchers have successfully designed and tested a system for rapid testing of large numbers of potential immunotherapy drugs.

A microfluidic chip system as alternative to animal experiments

A microfluidic chip system as alternative to animal experiments

Since mid-2019, the Fraunhofer IBMT has been developing an analysis platform as an alternative to animal experiments in drug development.

CRISPR opens door to new therapy options- ‘genome surgery’

CRISPR opens door to new therapy options- ‘genome surgery’

Scientists plan to edit their genomes to correct rare genetic mutations and slow or halt progression of their diseases.

CRISPRoff offers unrivaled control of epigenetic inheritance

CRISPRoff offers unrivaled control of epigenetic inheritance

Scientists have figured out how to modify CRISPR’s basic architecture to extend its reach beyond the genome and into what’s known as the epigenome.

Designing better antibody drugs with machine learning

Designing better antibody drugs with machine learning

Artificial intelligence could help to optimise the development of antibody drugs. This leads to active substances with improved properties, also with regard to tolerability in the body.

CRISPR to cure sickle cell disease

CRISPR to cure sickle cell disease

University of Illinois Chicago is one of the U.S. sites participating in clinical trials to cure severe red blood congenital diseases such as sickle cell anemia or Thalassemia by safely modifying the DNA of patients’ blood cells.

Microfluidic system may unravel how novel pathogens attack

Microfluidic system may unravel how novel pathogens attack

Researchers have invented a high-throughput cell separation method that can be used in conjunction with droplet microfluidics.

COVID-19 speeds up microfluidics development

COVID-19 speeds up microfluidics development

With soaring demand for point-of-care testing (POCT), microfluidics has been a pivotal resource as COVID-19 swept across the world.

An artificial cell on a chip

An artificial cell on a chip

Researchers have developed a precisely controllable system for mimicking biochemical reaction cascades in cells.

Popular articles

Subscribe to Newsletter