microneedle array
The flexible biodegradable microneedle array contains calcium peroxide.
Source: Purdue University/Vincent Walter

Microneedles deliver antibiotics to infected wounds

The microneedles pierce the biofilm layer of a wound and deliver the medicine to oxygenate the tissue and effectively eradicate biofilm infections on the wound.

Rahim Rahimi, an assistant professor in the School of Materials Engineering, has developed a flexible polymer composite microneedle array that can overcome the physicochemical bacterial biofilm present in chronic, nonhealing wounds and deliver both oxygen and bactericidal agents simultaneously.

"The biofilm acts as a shield, hindering antibiotics from reaching infected cells and tissues," Rahimi said. "When these microneedles pierce through the shield, they absorb the fluid underneath and dissolve, which delivers the antibiotic directly to the ulcerated cells and tissues."

Rahimi said the traditional method to bypass biofilm is for physicians to peel it off, which is painful to patients and doesn't discriminate unhealthy tissue from healthy tissue. "The microneedles don't cause pain because they are not long enough to touch nerve endings in the foot," he said. "In this published study, the team assessed the microneedles on ex vivo porcine wound models. In fewer than five minutes, the microneedles dissolved, the antibiotic was delivered and the patch was removed."

The lack of proper treatment of infected ulcers can lead to bacteremia and sepsis. As a result, chronic wounds are one of the key causes of limb amputations.

The next step to developing the microneedles beyond the proof-of-concept stage is to find partners to conduct human tests. Rahimi has disclosed the innovation to the Purdue Research Foundation Office of Technology Commercialization. OTC has filed a patent application on the intellectual property.

The results have been published in ACS Applied Bio Materials.

Related articles

MRSA: Microneedle patch delivers antibiotics

MRSA: Microneedle patch delivers antibiotics

Researchers are developing a microneedle patch that delivers antibiotics directly into the affected skin area.

Hydrogel fights drug-resistant bacteria

Hydrogel fights drug-resistant bacteria

Scientists have developed a new kind of antibiotic-free protection for wounds that kills drug-resistant bacteria.

Rapid screening of drug-resistent bacteria

Rapid screening of drug-resistent bacteria

A research team led by scientists at Hong Kong Baptist University (HKBU) has developed a novel cell sensor with a barcode-like micro-channel structure that enables rapid and low-cost screening of drug-resistant bacteria.

Antibiotic levels measured in breath

Antibiotic levels measured in breath

Researchers have shown in mammals that the concentration of antibiotics in the body can be determined using breath samples.

Smart dental implants resist bacterial growth

Smart dental implants resist bacterial growth

A smart dental implant resists bacterial growth and generates its own electricity through chewing and brushing to power a tissue-rejuvenating light.

Graphene binds drugs which kill bacteria on implants

Graphene binds drugs which kill bacteria on implants

Researchers have developed a new method to prevent bacterial infections, by covering a graphene-based material with bactericidal molecules.

Diabetology 4.0: emerging technologies for diabetes care

Diabetology 4.0: emerging technologies for diabetes care

This overview introduces smart insulin delivery systems and more innovations that help patients and doctors guide decision-making in diabetes care.

Insulin-producing implant for diabetics

Insulin-producing implant for diabetics

Bioengineers are using 3D printing and smart biomaterials to create an insulin-producing implant for type 1 diabetes patients.

3D printed device to treat middle ear infections

3D printed device to treat middle ear infections

Researchers have designed a miniaturized 3D-printed device to inactivate Pseudomonas aeruginosa, a common bacterium that causes the infection.

Popular articles

Subscribe to Newsletter