Parkinson’s: Patient treated with Deep Brain Stimulation device

In January, the neurosurgical department of the LMU University Hospital in Munich treated the first Parkinson's patient worldwide with a new neurostimulator, which enables better, more personalized care for patients. The new technology can possibly enable stimulation to be adjusted to the treatment requirements of different situations (e.g. walking, speaking, sleeping) and therefore optimize treatment outcome.

Photo
Doctors control the activity of the pacemaker on the tablet.
Source: LMU University Hospital Munich

Even “complex” everyday situations such as talking and walking at the same time should become easier for patients to manage. The neurosurgeons at the LMU University Hospital were also involved in the development of the new technology during clinical studies.

Deep Brain Stimulation (DBS) is delivered through a medical device, similar to a pacemaker, that controls electrodes in the brain and electrically stimulates precisely defined areas. DBS has been used to treat neurological movement disorders for decades. This new generation of THS systems was now first placed in the subthalamic nucleus (STN) of a patient suffering from Parkinson's. The system does not only deliver impulses to the brain, it also features the so-called BrainSense technology that enables the constant recording of patients’ brain signals. These recordings can then be evaluated by a physician to optimize stimulation delivery. Up until now, recordings of this kind were not possible. Treatment plans were optimized based on movement tests carried out in the clinic and - often incomplete - patient records. This new technology allows for brain waves to be continuously recorded, which combined with events recorded by the patient himself (including symptoms or side effects of medication), now enable targeted, personalized and data-controlled neurostimulation.

“DBS is proven to significantly improve motor function in people with Parkinson’s disease compared to standard medication alone and has successfully been used for many years in the treatment of neurological movement disorders,” says PD Dr. Jan H. Mehrkens, Head of Functional Neurology at the LMU Clinic for Neurosurgery in Munich. “Since we were already able to gain experience with the prototype during clinical studies, we have now come full circle in the development of new DBS technologies for Parkinson's patients.” Prof. Dr. Kai Boetzel, LMU clinic for Neurology added: “The new stimulator can measure the activity of the brain’s motor centers and react to it with different stimulation strengths. We will scientifically investigate, whether this ‘feedback stimulation’ is superior to the previous continuous stimulation.”

Parkinson's disease is the second most common disorder of the central nervous system after Alzheimer's disease. Around one percent of the world’s population over the age of 60 is affected. In Germany roughly 400,000 people suffer from it. Parkinson's disease is a slowly progressing condition. Gradually, the death of dopamine-producing nerve cells negatively affects the motor system. Parkinson's itself cannot be healed, therapy focuses on alleviating the symptoms. Treatment typically starts with medication to help reduce movement symptoms by increasing dopamine in the brain or mimicking its effects. When the disease has progressed, there are surgical options that include DBS.

Subscribe to our newsletter

Related articles

VR training improves physical and cognitive functions

VR training improves physical and cognitive functions

Researchers have developed an innovative training protocol that, utilizing immersive virtual reality (IVR), leads to real physical and cognitive benefits.

3D printed rubbery brain implants

3D printed rubbery brain implants

Engineers are working on developing soft, flexible neural implants that can gently conform to the brain’s contours and monitor activity over longer periods.

Therapies without drugs

Therapies without drugs

Researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease.

Wearable brain stimulator for stroke recovery

Wearable brain stimulator for stroke recovery

A non-invasive, wearable, magnetic brain stimulation device could improve motor function in stroke patients.

AI may alter how doctors treat depression

AI may alter how doctors treat depression

Artificial intelligence may soon play a critical role in choosing which depression therapy is best for patients.

AI for intensive care of traumatic brain injury

AI for intensive care of traumatic brain injury

AI-based algorithm may be utilized in the intensive care unit for treating patients with severe traumatic brain injury.

Biosensor may help guide treatment of Alzheimer’s

Biosensor may help guide treatment of Alzheimer’s

Researchers have created biosensor technology that may help lead to safe stem cell therapies for treating Parkinson’s diseases.

AI system tracks tremors in Parkinson’s patients

AI system tracks tremors in Parkinson’s patients

Researchers have developed machine learning algorithms that, combined with wearable sensors, can continuously track tremor severity in Parkinson's patients.

Needle-like sensor helps treat illnesses

Needle-like sensor helps treat illnesses

A tiny, needle-like sensor that could potentially play a significant role in treating diseases such as depression, chronic pain, Parkinson’s and epilepsy.

Popular articles