The portable 3D imaging device will improve the treatment and diagnosis of...
The portable 3D imaging device will improve the treatment and diagnosis of cancer.
Source: Loughborough University
08.04.2021 •

Portable hybrid gamma camera should improve cancer diagnosis

Scientists from Loughborough University have designed a portable 3D imaging device which will improve the treatment and diagnosis of cancer.

Current handheld gamma imaging tools are small and easy to use, but are limited to providing 2D information, giving doctors and surgeons only part of the overall picture. Much larger systems are able to give three-dimensional images, however, they are bulky and complex – often occupying entire rooms.

Now, researchers from Loughborough University have published a paper which shows it is possible to combine the best aspects of both devices.

Lead author Dr Sarah Bugby, of the School of Science, is developing the Hybrid Gamma Camera (HGC) – a device about the size of a hairdryer which can easily be carried to wherever it is needed. The original 2D HGC was created around five years ago at Leicester and Nottingham universities, where Dr Bugby joined the project before bringing the camera to Loughborough to continue the work.

It works by taking two images from slightly different angles and calculating the exact position of whatever it is observing, the exact same way astronomers measure the vast distances to stars.

Dr Bugby said: “We showed that it was possible to conduct handheld stereoscopic gamma imaging, which will provide 3D rather than 2D information. “By combining gamma and optical imaging, this 3D information will tell the user where and how deep a source of radioactivity is inside a particular material. “This has applications in radioguided surgery – where a surgeon is looking for a source of radioactivity within the body for example during cancer treatment and diagnosis – and may also find use in other areas in the nuclear industry.”

Photo
Source: Loughborough University

The University is also hoping to work with academics in Uruguay to get the camera into the hands of physicians. The device would give medical professionals greater flexibility as there are only three large imagers in the country – at medical centres in Montevideo, Durazno and Salto – which are capable of gamma imaging. Dr Bugby said: “Currently, a patient must travel to one of those centres, in some cases hundreds of kilometres away, for initial imaging, then travel back to their city of origin for surgery. “A nuclear medicine physician must travel to the city where the surgery will be performed, bringing a gamma probe, in order to help the surgeon, locate the sentinel node during surgery.

“If patients cannot attend one of the nuclear medicine centers, they won’t have SLN performed and they will have all their axillary nodes removed with its associated morbidity, basically, a more invasive surgery than would otherwise be needed.”

The camera works by using a pinhole (pictured above) – the small hole in the centre of the device – which allows an image of the source of gamma radiation to be taken. Doing this twice from two slightly different positions allows the camera to triangulate the exact distance from the source giving an accurate 3D reading. Due to the compact size of the gamma imaging technology, this could be done with a handheld system.

Subscribe to our newsletter

Related articles

ConvPath software uses AI to identify cancer cells

ConvPath software uses AI to identify cancer cells

A software tool uses artificial intelligence to recognize cancer cells from digital pathology images — giving clinicians a powerful way of predicting patient outcomes.

Hydrogel improves method to diagnose cancer

Hydrogel improves method to diagnose cancer

Researchers tested the effectiveness of specialized hydrogels.

Machine learning helps diagnose leukemia

Machine learning helps diagnose leukemia

Researchers at the University of Bonn show how artificial intelligence improves the evaluation of blood analysis data.

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

AI assesses metastatic potential in skin cancers

AI assesses metastatic potential in skin cancers

Using a deep learning algorithm, researchers have developed a way to accurately predict which skin cancers are highly metastatic.

Noninvasive test detects cancer cells

Noninvasive test detects cancer cells

Scientists at have shown that diagnostic nanoparticles could be used to monitor tumor recurrence after treatment or to perform routine cancer screenings.

Pancreatic organoids on a chip platform

Pancreatic organoids on a chip platform

An organoid on chip platform mimics robustly key features of human pancreas development. This is a stepping stone towards reliable diagnostic solutions for early-stage pancreatic cancer.

MasSpec Pen shows promise in pancreatic cancer surgery

MasSpec Pen shows promise in pancreatic cancer surgery

The MasSpec Pen has shown to accurately identify tissues and surgical margins directly in patients and differentiate healthy and cancerous tissue from banked pancreas samples.

Integrating imaging with deep neural networks

Integrating imaging with deep neural networks

Neural network framework may increase radiologist's confidence in assessing the type of lung cancer on CT scans, informing individualized treatment planning.

Popular articles

Subscribe to Newsletter