Metallic glass sample.
Metallic glass sample.
Source: NUST MISIS

Scientists improve metallic glasses

Researchers at National University of Science and Technology MISIS (NUST MISIS) have managed to develop a unique method to process bulk metallic glasses. According to the authors of the study, they have managed to find processing conditions that significantly improve the quality of this promising material.

Metallic glasses (amorphous metals) are materials which, unlike crystalline forms, don’t have a long range atomic order. According to the scientists, this makes the material high-strength, elastic, corrosion resistant; amorphous metals also have other useful properties, due to which they are in demand in medicine, mechanical engineering, and magneto-electrical engineering.

The scientists explained that the material’s brittleness is one of the obstacles to its widespread use. The authors of the study believe that the new method to process metallic glasses will help eliminating this problem. The method was tested on an amorphous Zr-Cu-Fe-Al system alloy. “Annealing before and after rolling was ‘prohibited’ by the canons of the science of metallic glasses, since this leads to their embrittlement in the absolute majority of cases. The choice of the alloy composition and alloying system helped us bypass this problem: annealing at about 100 degrees below the glass-transition temperature allowed to achieve ductilization of bulk samples and hardening of tape samples without embrittlement,” Professor Dmitry Luzgin, the research supervisor, explained.

Scientists improve metallic glasses
Source: NUST MISIS

According to the scientists, it is the way the original amorphous matrix of the alloy decomposes that affects the resulting material’s characteristics. Different results are achieved depending on the samples’ geometry, bulk or tape. “For bulk samples, we’ve achieved an increase in tensile plasticity of up to 1.5% at room temperature by dividing a homogeneous amorphous phase into two. For ribbon samples, a 25% increase in hardness has been achieved, which is provided with the separation of secondary-amorphous-phase glassy nanoparticles of about 7 nm with retention of plasticity on bending and compression. This is an unexpected and rather significant result,” Andrey Bazlov, the author of the method, an employee at the Department of Physical Metallurgy of Non-ferrous Metals of NUST MISIS, said.

Scientists improve metallic glasses
Source: NUST MISIS

The scientists explained that the Zr-Cu-Fe-Al system alloy cannot be used as the main structural material due to its high cost, but they believe that the proposed technology can be applied to other amorphous alloys, in particular, titanium.

The new method will simplify the process of imparting the necessary properties to metallic glasses, thereby expanding their scope of application. In the future, the research team wants to use the new technology to produce titanium and other high-quality bulk metallic glasses.

The research was published in Journal of Alloys and Compounds.

Subscribe to our newsletter

Related articles

A microfluidic chip system as alternative to animal experiments

A microfluidic chip system as alternative to animal experiments

Since mid-2019, the Fraunhofer IBMT has been developing an analysis platform as an alternative to animal experiments in drug development.

Rapid POCT for opioids in the bloodstream

Rapid POCT for opioids in the bloodstream

Point-of-care electrochemical sensors using revolutionary nanocarbon technology can rapidly test for opioid concentrations in the bloodstream.

virtual.COMPAMED receives international resonance

virtual.COMPAMED receives international resonance

COMPAMED 2020 took place entirely online due to the pandemic - but still won over their audiences due to their high degree of international resonance in this format too.

COVID-19 speeds up microfluidics development

COVID-19 speeds up microfluidics development

With soaring demand for point-of-care testing (POCT), microfluidics has been a pivotal resource as COVID-19 swept across the world.

virtual.COMPAMED 2020 highlights the importance of suppliers

virtual.COMPAMED 2020 highlights the importance of suppliers

The supplier sector will showcase its expertise and innovative high-tech solutions for the medical technology industry.

A portable terahertz laser for the lab

A portable terahertz laser for the lab

Researchers have developed a high-power, portable version of a device called a quantum cascade laser, which can generate terahertz radiation outside of a laboratory setting.

3D printed micro-scale fluid channels

3D printed micro-scale fluid channels

Researchers have 3D printed unique fluid channels at the micron scale that could automate production of diagnostics, sensors, and assays used for a variety of medical tests and other applications.

A pill-sized heating device for diagnostic testing

A pill-sized heating device for diagnostic testing

Researchers have developed a ‘heater’ — about the size of a pill tablet — that regulates the temperature of biological samples through the different stages of diagnostic testing.

Lensless microscopy chip for diagnostic applications

Lensless microscopy chip for diagnostic applications

Researchers at the University of Connecticut have developed a lensless microscope that allows an observer to enjoy an enormous field of view.

Popular articles