‘Smart’ surfaces promise safer implants

Researchers at McMaster University have solved a vexing problem by engineering surface coatings that can repel everything, such as bacteria, viruses and living cells, but can be modified to permit beneficial exceptions.

Photo
Blood slides off the smart surface at left, but clings to an intreated surface at right.
Source: Kevin Patrick Robbins, McMaster University

The discovery holds significant promise for medical and other applications, making it possible for implants such as vascular grafts, replacement heart valves and artificial joints to bond to the body without risk of infection or blood clotting.

The new nanotechnology has the potential to greatly reduce false positives and negatives in medical tests by eliminating interference from non-target elements in blood and urine. The research adds significant utility to completely repellent surfaces that have existed since 2011. Those surface coatings are useful for waterproofing phones and windshields, and repelling bacteria from food-preparation areas, for example, but have offered limited utility in medical applications where specific beneficial binding is required. “It was a huge achievement to have completely repellent surfaces, but to maximize the benefits of such surfaces, we needed to create a selective door that would allow beneficial elements to bond with those surfaces,” explains Tohid DIdar of McMaster’s Department of Mechanical Engineering and School of Biomedical Engineering.

In the case of a synthetic heart valve, for example, a repellent coating can prevent blood cells from sticking and forming clots, making it much safer. “A coating that repels blood cells could potentially eliminate the need for medicines such as warfarin that are used after implants to cut the risk of clots,” says co-author Sara M. Imani, a McMaster PhD student in Biomedical Engineering. Still, she explains, a completely repellent coating also prevents the body from integrating the new valve into the tissue of the heart itself.

By designing the surface to permit adhesion only with heart tissue cells, the researchers are making it possible for the body to integrate the new valve naturally, avoiding the complications of rejection. The same would be true for other implants, such as artificial joints and stents used to open blood vessels. “If you want a device to perform better and not be rejected by the body, this is what you need to do,” says co-author Maryam Badv, also a McMaster PhD student in Biomedical Engineering. “It is a huge problem in medicine.”

Outside the body, selectively designed repellent surfaces could make diagnostic tests much more accurate by allowing only the particular target of a test – a virus, bacterium or cancer cell, for example – to stick to the biosensor that is looking for it, a critical advantage given the challenges of testing in complex fluids such as blood and urine.

Subscribe to our newsletter

Related articles

Smart ring detects COVID-19 early

Smart ring detects COVID-19 early

According to new research, the Oura smart ring is indeed suitable for detecting COVID-19 infection up to three days before symptoms appear.

Nanotechnology provides rapid visual detection of COVID-19

Nanotechnology provides rapid visual detection of COVID-19

Scientists have developed an experimental diagnostic test for COVID-19 that can visually detect the presence of the virus in 10 minutes.

Fighting infectious diseases using AI

Fighting infectious diseases using AI

Researchers have harnessed the power of artificial intelligence to dramatically accelerate the discovery of drug combination therapies.

‘Smart’ implant coatings to nip infections in the bud

‘Smart’ implant coatings to nip infections in the bud

Physicists from University of Augsburg have developed a "smart" coating that is particularly toxic when bacteria are present in its environment.

Organtransplantation: Biophotonic therapy kills infections

Organtransplantation: Biophotonic therapy kills infections

Scientists have developed a new technique for the decontamination of organs before transplantation using ultraviolet and red light irradiation.

AI detects the presence of viruses

AI detects the presence of viruses

UCLA researchers have developed a rapid and automated biosensing method based on holography coupled with deep learning.

Using machine learning to estimate COVID-19’s seasonal cycle

Using machine learning to estimate COVID-19’s seasonal cycle

Scientists are launching a project to apply machine learning methods to assess the role of climate variables in disease transmission

A novel swab design to augment COVID-19 testing

A novel swab design to augment COVID-19 testing

Scientists have developed a novel test swab that can be 3D printed using inexpensive, widely available materials and speedily assembled in a range of fabrication settings.

A biosensor for the COVID-19 virus

A biosensor for the COVID-19 virus

Researchers have developed a novel sensor for detecting the new coronavirus. In future it could be used to measure the concentration of the virus in the environment.

Popular articles