Understanding the utility of plasmas

Researchers aim to better explain the way plasmas interact with biological materials to help pave the way for plasma use in wound healing and cancer therapy.

Photo
Evolution of the forward (a) and the reflected (b) ionization waves approaching and reflecting from the conductive dielectric surface. The ionization wave front is represented in the simulations by electron impact ionization source Se (cm-3s-1). The arrows indicate the direction of the IW propagation. Density of O-radicals (c), ozone O3 (d) and singlet delta O2(1Δ) (d) after the passage of forward, reflected, and secondary forward IWs.
Source: Natalia Yu. Babaeva

Plasma medicine is an emerging field, as plasmas show promise for use in a wide range of therapies from wound healing to cancer treatment. Plasma jets are the main plasma sources typically used in plasma-surface applications. Before applications can progress, however, a better understanding of how plasma jets modify the surfaces of biological tissue is required.

To help with this understanding, researchers from the Russian Academy of Sciences conducted computer simulations of the interaction between an atmospheric pressure plasma jet with a surface that has properties similar to blood serum. They present their analysis in the Journal of Applied Physics. "While using the plasma jets for the purpose of plasma medicine, it is important to know that the presence or absence of the treated surface in vicinity of a jet significantly influences jet parameters," said Natalia Babaeva, one of the authors. "For example, the wounds with blood serum can have different properties. These properties can also vary during the plasma treatment."

Depending on the characteristics of the tissue being treated, the plasma jet can behave in a number of different ways. The ionization waves produced by plasma jets may reflect back and forth, or they can spread over the tissue as surface discharge.

For the type of plasma Babaeva and her team studied, they found that the biomaterial-like surface can lead to multiple reflections of the plasma jet, and with each passage, the number of electrons and radicals -- a type of very reactive molecule -- increases. Specifically, the radicals identified are oxygen, hydroxide, hydrogen peroxide, ozone, and nitric oxide, also known as reactive oxygen species and reactive nitrogen species. "Reactive oxygen species and reactive nitrogen species are important for the actions of antimicrobial drugs, cancer, and wound healing therapies," Babaeva said, adding that they both play an active role in the immune systems of animals and plants.

Quantifying these radicals and understanding the direction and magnitude of their flow is important for optimizing plasmas for use in biomedical applications, where the ability to control their behavior to some degree is crucial. The team's simulations provide the means to predict this behavior. "This prediction is very important, as it determines the plasma treatment potential," Babaeva said. "Our research adds some knowledge on the particular behavior of the jet in the presence of highly conductive surfaces."

Subscribe to our newsletter

Related articles

3D printed oesophageal stents to revolutionize cancer treatment

3D printed oesophageal stents to revolutionize cancer treatment

World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionize the delivery of chemotherapy drugs.

Lasers and molecular tethers enable tissue engineering

Lasers and molecular tethers enable tissue engineering

Researchers have used lasers and molecular tethers to create perfectly patterned platforms for tissue engineering.

“Stretching rack” for cells

“Stretching rack” for cells

An ingenious device, only a few micrometers in size, enables to study the reaction of individual biological cells to mechanical stress.

Scientists get soft on 3D printing

Scientists get soft on 3D printing

Researchers have developed a new method of 3D printing gels and other soft materials.

Machine learning speeds up bioscaffold development

Machine learning speeds up bioscaffold development

A dose of artificial intelligence can speed the development of 3D-printed bioscaffolds that help injuries heal.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printed hydrogels to be used in cancer immunotherapy

3D printed hydrogels to be used in cancer immunotherapy

The new 3D hydrogels provide high rates of cell proliferation, as they mimic lymph nodes, where T-cells reproduce in vivo.

CaproGlu: 'Biorubber' glue for faster surgical recovery

CaproGlu: 'Biorubber' glue for faster surgical recovery

Researchers have invented a new type of surgical glue that can help join blood vessels and close wounds faster and may also serve as a platform to deliver pain relief drugs.

Lego-inspired 3D printed soft tissue bricks

Lego-inspired 3D printed soft tissue bricks

Researchers have developed a tiny, 3D-printed technology that can be assembled like Lego blocks and help repair broken bones and soft tissue.

Popular articles