Using polarized LEDs for detection of cancer progression

Researchers at Tokyo Institute of Technology (Tokyo Tech) have experimentally demonstrated a novel cancer diagnosis technique based on the scattering of circularly polarized light. Computational studies revealed that this technique can detect the progression of precancerous lesions and early cancer. This method can be implemented using an endoscope equipped with spin-LEDs—devices that emit circularly polarized light.

Photo
In vivo cancer diagnosis: Schematic illustration of the proposed technique using spin-LEDs on the tip of an endoscope.
Source: Tokyo Institute of Technology

Most cancers of the digestive system emerge in the surface layer first and then progress into deeper layers. While surface layer carcinomas can be readily treated using an endoscope, carcinomas that have advanced onto deeper layers need surgical intervention to prevent them from metastasizing to lymph nodes or other organs. Thus, accurate measurements of the depth of cancer progression without damaging tissues are important to obtain useful information for making treatment-related decisions.

Current endoscopic diagnosis techniques like narrow-band imaging can only confirm the presence of cancer and distinguish between tumorous and non-tumorous tissue. There are very few direct measurement techniques that can provide a quantitative diagnosis of the depth and area of a carcinoma.

To tackle the above-mentioned issue, a multinational research team led by Dr. Nozomi Nishizawa of Tokyo Tech recently conducted a study to demonstrate a novel cancer diagnosis technique using circularly polarized light.

Their approach relies on how circularly polarized light interacts with healthy and unhealthy cells. "The depolarization of circularly polarized light scattered from biological tissues depends on structural changes in cell nuclei, which can provide valuable information for detecting cancer concealed in healthy tissues," explains Dr. Nishizawa.

Photo
Experimental demonstration of the cancer diagnosis technique in biological tissue (left)Schematic illustration of the experimental setup. A laser beam with a wavelength of 914 nm is right-handed circularly polarized using optical filters and then focused on the sample. The scattered light was detected at an emission angle of φ. (right)Experimental results of line-scanning along the line which crosses the boundary between cancerous and healthy areas multiple times. The upper panel shows a microscopic view with cancerous parts surrounded by blue dotted lines. The lower graph shows the position dependence of the circular polarization of scattered light, which varied according to the state of the tissue.

The team experimentally demonstrated this fact by shining near-infrared circularly polarized light on sliced tissue samples of murine liver containing metastatic lesions derived from intrasplenically injected human pancreatic cancer cells. They observed clear differences in the degree of circular polarization of the light scattered from the samples depending on the state of the biotissue, showing that cancer identification is possible with this technique.

Moreover, through computational studies with numerical simulations incorporating the scattering phenomena of circularly polarized light, the team also demonstrated that the depth profile of biotissues can be obtained by manipulating the detection angle. In short, the sampling depth in the target biotissue becomes deeper as the emission angle of the scattered light becomes close to perpendicular. Therefore, this dependence on the emission angle provides information on the depth profile of tissues or, in other words, the cancer’s progression toward the deeper layers.

Photo
Cross-section of the designed endoscope probe for in vivo diagnosis of cancer progression The probe consists of one spin-LED as an irradiation source, a parabolic mirror, and some spin-polarized photo-diodes (spin-PDs), which are detectors of circularly polarized light. Circularly polarized light is irradiated from the spin-LED onto the tissue. The scattered light beams are separated according to their emission angle by the parabolic mirror, and then the beams are separately detected by each spin-PD. Details are described in Nishizawa et al., JJAP 59, SEEG03 (2020).
Source: Tokyo Institute of Technology

However, one technical challenge had to be addressed to make this diagnosis method feasible: circularly polarized light cannot travel through optical fiber without losing its polarization. Therefore, the use of circularly polarized light in vivo requires a compact source of circularly polarized light. One promising candidate for such a source is spin-LEDs—devices developed by the researchers. 

In 2017, they succeeded in creating spin-LEDs capable of emitting almost pure circularly polarized light at room temperature. "By combining our novel technique based on circularly polarized light scattering and spin-LED devices, we will be able to determine the progression of precancerous lesions in vivo," remarks Dr. Nishizawa. To this end, in their latest study, the team designed the structure of an endoscope probe containing circularly-polarized LEDs, which can detect scattered light with various emission angles simultaneously.

The researchers are hopeful that the proposed technique will find application in the diagnosis of ulcerative colitis and alcoholic cirrhosis in the future. Moreover, it could also be applied for the observation of engraftments in regenerative medicine and transplant surgery.

The findings have been published in the Journal of Biophotonics.

Subscribe to our newsletter

Related articles

MasSpec Pen shows promise in pancreatic cancer surgery

MasSpec Pen shows promise in pancreatic cancer surgery

The MasSpec Pen has shown to accurately identify tissues and surgical margins directly in patients and differentiate healthy and cancerous tissue from banked pancreas samples.

Radiation therapy: 3D printed shields for protection

Radiation therapy: 3D printed shields for protection

To reduce tissue injury side effects from radiation therapy, researchers have developed 3D-printed gastrointestinal radioprotective devices that can be generated from patient CT scans.

Medical needles for high-tech cancer diagnostics

Medical needles for high-tech cancer diagnostics

Modern medicine needs better quality samples than traditional biopsy needles can provide, ultrasonically oscillating needles can improve treatment and reduce discomfort.

Portable hybrid gamma camera should improve cancer diagnosis

Portable hybrid gamma camera should improve cancer diagnosis

Scientists have designed a portable 3D imaging device which will improve the treatment and diagnosis of cancer.

AI method can detect precursors to cervical cancer

AI method can detect precursors to cervical cancer

Using AI and mobile digital microscopy, researchers hope to create screening tools that can detect precursors to cervical cancer in women in resource-limited settings.

AI can identify cancerous cells by their acidity

AI can identify cancerous cells by their acidity

Using a special dye, cells are colored according to their pH, and a machine learning algorithm can detect changes in the color spectrum due to cancer.

AI system for the diagnosis of breast cancer

AI system for the diagnosis of breast cancer

Researchers have developed a new tissue-section analysis system for diagnosing breast cancer based on artificial intelligence.

Breath gas analysis detects cancer

Breath gas analysis detects cancer

Researchers are developing solutions designed to enable the analysis of breath gas to assist with the diagnosis of disease.

Mouth and throat cancer: Robotic surgery may improve outcomes

Mouth and throat cancer: Robotic surgery may improve outcomes

Robotic surgery for patients with early stage, oropharyngeal squamous cell cancer is associated with improved health outcomes, including better long-term survival.

Popular articles

Subscribe to Newsletter