The device allows researchers to mimic the environment inside the body to...
The device allows researchers to mimic the environment inside the body to screen for better cancer screening drugs.
Source: Kyoto University/Yokokawa Lab

Using tumor-on-a-chip to find cancer drugs

Kyoto University researchers have developed a new ‘tumor-on-a-chip’ device that can better mimic the environment inside the body, paving the way for improved screening of potential cancer fighting drugs.

The path to drug discovery is never easy. Scientists and clinicians can go through tens-of-thousands of potential compounds for years to find a handful of viable candidates, only for them to fail at the clinical level. “Potential compounds are tested using animal models and cells cultured in a dish. However, those results frequently do not transfer over to human biology,” explains first author Yuji Nashimoto formally of the Graduate School of Engineering, and now at Tohoku University. “Furthermore, cells on a dish lack the three-dimensional structure and blood vessels, or vasculature, that keep it alive. So, we came up with a plan to construct a device that solves these issues.”

The device, reported in the journal Biomaterials, is the size of a coin with a 1 mm well at the center. This well is flanked by a series of 100 µm ‘microposts’. The idea is that a three-dimensional culture of tumor cells is placed in the middle well, and then cells that construct blood vessels are places along the microposts. Over a few days the vessels grow and attaches to the culture. “This ‘perfusable vasculature’ allows us to administer nutrients and drugs into the system to mimic the environment in the body,” continues Nashimoto. “This allows us to have a clearer picture of the effectiveness of cancer treating compounds.”

This perfusion did significantly keep the tumor cells healthy by keeping cell proliferation up and cell death down. A drug assay was then performed with the team administrating an anti-tumor drug at low doses. Interestingly, the drug was more effective under static conditions compared to when nutrients were flowing through the tumor cells.

In contrast, the drug’s effects became more potent when the flow was turned on and the dosage was increased. Ryuji Yokokawa, who lead the team, explains that the unexpected results prove that we need to consider the balance between proliferation of tumor cells and the efficacy of the drug under flow conditions. “We hypothesize that at low doses the benefit of the nutrient flow outweighs the effect of the anti-tumor drug. It proves the importance of blood flow in the vasculature when screening for drugs.”

He concludes, “Due to its size and utility, we hope the new device can expedite the tests on the countless number of potential new drugs. While many questions remain, we are happy to have developed this device and have shown that three-dimensional perfused cell culture is vital for the next step in drug discovery.”

Subscribe to our newsletter

Related articles

Pancreatic “organoids” mimic the real thing

Pancreatic “organoids” mimic the real thing

Studying these organoids could help researchers develop and test new treatments for pancreatic cancer.

Breast cancer-on-a-chip tests immunotherapy drugs

Breast cancer-on-a-chip tests immunotherapy drugs

Researchers have successfully designed and tested a system for rapid testing of large numbers of potential immunotherapy drugs.

Plant-based gel fast-tracks 'mini-organs' growth

Plant-based gel fast-tracks 'mini-organs' growth

The world’s first bioactive plant-based nanocellulose hydrogel supports organoid growth and helps reduce the costs of studies into cancer and COVID-19.

A microfluidic chip system as alternative to animal experiments

A microfluidic chip system as alternative to animal experiments

Since mid-2019, the Fraunhofer IBMT has been developing an analysis platform as an alternative to animal experiments in drug development.

Hydrogel improves method to diagnose cancer

Hydrogel improves method to diagnose cancer

Researchers tested the effectiveness of specialized hydrogels.

Will we grow and eat your own vaccines?

Will we grow and eat your own vaccines?

The future of vaccines may look more like eating a salad than getting a shot in the arm.

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

Pancreatic organoids on a chip platform

Pancreatic organoids on a chip platform

An organoid on chip platform mimics robustly key features of human pancreas development. This is a stepping stone towards reliable diagnostic solutions for early-stage pancreatic cancer.

Immunotherapy response studied in body-on-a-chip models

Immunotherapy response studied in body-on-a-chip models

Clinicians are using patient-specific tumor 'organoid' models as a preclinical companion platform to better evaluate immunotherapy treatment for appendiceal cancer.

Popular articles

Subscribe to Newsletter