3D printing your ‘bionic eye’

For the first time, researchers at the University of Minnesota have fully 3D printed an array of light receptors on a hemispherical surface. This discovery marks a significant step toward creating a “bionic eye” that could someday help blind people see or sighted people see better.

Photo
Researchers at the University of Minnesota have fully 3D printed an image sensing array on a hemisphere, which is a first-of-its-kind prototype for a “bionic eye.”
Source: University of Minnesota, McAlpine Group

Researchers started with a hemispherical glass dome to show how they could overcome the challenge of printing electronics on a curved surface. Using their custom-built 3D printer, they started with a base ink of silver particles. The dispensed ink stayed in place and dried uniformly instead of running down the curved surface. The researchers then used semiconducting polymer materials to print photodiodes, which convert light into electricity. The entire process takes about an hour. “Bionic eyes are usually thought of as science fiction, but now we are closer than ever using a multimaterial 3D printer,” said Michael McAlpine, a co-author of the study and University of Minnesota Benjamin Mayhugh Associate Professor of Mechanical Engineering.

McAlpine said the most surprising part of the process was the 25 percent efficiency in converting the light into electricity they achieved with the fully 3D-printed semiconductors. “We have a long way to go to routinely print active electronics reliably, but our 3D-printed semiconductors are now starting to show that they could potentially rival the efficiency of semiconducting devices fabricated in microfabrication facilities,” McAlpine said. “Plus, we can easily print a semiconducting device on a curved surface, and they can’t.”

McAlpine said the most surprising part of the process was the 25 percent efficiency in converting the light into electricity they achieved with the fully 3D-printed semiconductors. “We have a long way to go to routinely print active electronics reliably, but our 3D-printed semiconductors are now starting to show that they could potentially rival the efficiency of semiconducting devices fabricated in microfabrication facilities,” McAlpine said. “Plus, we can easily print a semiconducting device on a curved surface, and they can’t.”

McAlpine and his team are known for integrating 3D printing, electronics, and biology on a single platform. They received international attention a few years ago for printing a “bionic ear.” Since then, they have 3D printed life-like artificial organs for surgical practice, electronic fabric that could serve as “bionic skin,” electronics directly on a moving hand, and cells and scaffolds that could help people living with spinal cord injuries regain some function.

McAlpine’s drive to create a bionic eye is a little more personal. “My mother is blind in one eye, and whenever I talk about my work, she says, ‘When are you going to print me a bionic eye?’” McAlpine said. McAlpine says the next steps are to create a prototype with more light receptors that are even more efficient. They’d also like to find a way to print on a soft hemispherical material that can be implanted into a real eye.

Subscribe to our newsletter

Related articles

Bionic eye: Computer model fosters improvements

Bionic eye: Computer model fosters improvements

Researchers develop signals that could bring color vision and improved clarity to prosthesis for the blind.

Bionics open eyes to a frontier in vision restoration

Bionics open eyes to a frontier in vision restoration

Researchers have developed a revolutionary cortical vision device that could one day help restore vision to the blind.

"Super Human Eye" works like a real one

"Super Human Eye" works like a real one

Researchers have crafted an artificial eye with capabilities close to its human model.

EYEMATE sensor is a sentinel to watch over ocular pressure

EYEMATE sensor is a sentinel to watch over ocular pressure

The sensor system implant provides actionable information to optimize the therapy for patients afflicted with glaucoma.

Bringing the bling to improve implants

Bringing the bling to improve implants

Researchers have for the first time successfully coated 3D printed titanium implants with diamond.

3D biocomposites can repair large bone defects

3D biocomposites can repair large bone defects

Loosening hip implants can cause major damage to the bone and a simple replacement won’t suffice to carry the load during movements. Researchers have turned to bioprinting to solve this problem.

Bionics: better hearing with optical cochlear implants

Bionics: better hearing with optical cochlear implants

Scientists at The German Primate Center want to use genetic engineering methods to improve cochlear implants.

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Improved safety standard for bionic devices

Improved safety standard for bionic devices

Researchers at University of Sydney have developed a new moisture test for bionic devices such pacemakers and cochlear implants.

Popular articles

Subscribe to Newsletter