Researchers tested their magnet-tipped robot in a maze.
Researchers tested their magnet-tipped robot in a maze.
Source: David Baillot/University of California San Diego

A GPS-like system for flexible medical robots

Roboticists at the University of California San Diego have developed an affordable, easy to use system to track the location of flexible surgical robots inside the human body. The system performs as well as current state of the art methods, but is much less expensive. Many current methods also require exposure to radiation, while this system does not.

The system was developed by Tania Morimoto, a professor of mechanical engineering at the Jacobs School of Engineering at UC San Diego, and mechanical engineering Ph.D. student Connor Watson. “Continuum medical robots work really well in highly constrained environments inside the body,” Morimoto said. “They’re inherently safer and more compliant than rigid tools. But it becomes a lot harder to track their location and their shape inside the body. And so if we are able track them more easily that would be a great benefit both to patients and surgeons.”

The researchers embedded a magnet in the tip of a flexible robot that can be used in delicate places inside the body, such as arterial passages in the brain. “We worked with a growing robot, which is a robot made of a very thin nylon that we invert, almost like a sock, and pressurize with a fluid which causes the robot to grow,” Watson said. Because the robot is soft and moves by growing, it has very little impact on its surroundings, making it ideal for use in medical settings.

The researchers then used existing magnet localization methods, which work very much like GPS, to develop a computer model that predicts the robot’s location. GPS satellites ping smartphones and based on how long it takes for the signal to arrive, the GPS receiver in the smartphone can determine where the cell phone is. Similarly, researchers know how strong the magnetic field should be around the magnet embedded in the robot. They rely on four sensors that are carefully spaced around the area where the robot operates to measure the magnetic field strength. Based on how strong the field is, they are able to determine where the tip of the robot is.

Morimoto and Watson went a step further. They then trained a neural network to learn the difference between what the sensors were reading and what the model said the sensors should be reading. As a result, they improved localization accuracy to track the tip of the robot. “Ideally we are hoping that our localization tools can help improve these kinds of growing robot technologies. We want to push this research forward so that we can test our system in a clinical setting and eventually translate it into clinical use,” Morimoto said.

The whole system, including the robot, magnets and magnet localization setup, costs around $100.

Subscribe to our newsletter

Related articles

Robotics in care: The hospital bed of the future

Robotics in care: The hospital bed of the future

Physical strains are one of the main reasons for sick leaves and early retirement amongst nursing staff. Researchers are developing a robotic systems and sensor solutions for hospital beds.

Integrate micro chips for electronic skin

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

Wearable antennae stretches boundaries of medical tech

Wearable antennae stretches boundaries of medical tech

Researchers from Penn State led two international collaborations to prototype a wireless, wearable transmitter while also improving the transmitter design process.

Enhanced safety and precision with semi-automatic milling systems

Enhanced safety and precision with semi-automatic milling systems

Professor Dr Henning Windhagen is a great fan of semi-automatic systems in the OR that help with implants but leave the surgeon in the driver’s seat.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

Aged care monitoring and alert technology

Aged care monitoring and alert technology

Sleeptite has launched the world-first smart monitoring system, REMi, delivering real-time and non-invasive resident monitoring and alerts.

Algorithm designs soft robots that sense

Algorithm designs soft robots that sense

Deep learning technique optimizes the arrangement of sensors on a robot’s body to ensure efficient operation.

8 autonomous robots for disinfecting surfaces

8 autonomous robots for disinfecting surfaces

In this third part of our ongoing series, we present eight additional systems that are currently being deployed to decontaminate and sanitize surfaces.

Popular articles

Subscribe to Newsletter