ADA: Assistive robot learns to feed

Engineers have taught a assistive robot the strategies needed to pick up food with a fork and gingerly deliver it to a person’s mouth.

Photo
ADA presents the strawberry to a volunteer. The inset shows the face recognition system the robot uses to precisely deliver the strawberry to the volunteer’s mouth.
Source: Eric Johnson/University of Washington.

About a million Americans with injury or age-related disabilities need someone to help them eat. Now NIBIB funded engineers have taught a robot named ADA, which refers to its Assistive Dexterous Arm, the strategies needed to pick up food with a fork and gingerly deliver it to a person’s mouth.

Siddhartha Srinivasa, Ph.D., the Boeing Endowed Professor at the School of Computer Science and Engineering at the University of Washington, is known as a passionate roboticist who builds complete robotic systems that integrate perception, planning, and control to perform practical functions in the real world. Currently, Srinivasa and his team have turned to helping the million or so individuals in the U.S. alone who need someone to help them eat.

“We have supported this group’s outstanding work developing systems for wheelchair control based on understanding the user’s intent. This current paper paints an excellent picture of the parameters that need to be considered from an engineering point of view to develop a feeding robot,” says Grace Peng, Ph.D., director of the NIBIB program in Mathematical Modeling, Simulation, and Analysis.

Early in the design of ADA the engineers realized they had to start from the ground up. In this case ground zero was skewering pieces of food onto a fork. They began by watching, measuring, and cataloguing how people do it. Not entirely surprising to trained engineers, different skewering strategies were employed based on the size, shape, stiffness, pliability, and other physical properties of foods that included strawberries, banana pieces, melon cubes, strips of celery, and baby carrots.

Photo
The ADA robot skewers a strawberry at one end. It can then present the opposite end to the individual, which is away from the fork’s tines.
Source: Eric Johnson/University of Washington.

The team used the data collected on the strategies people use to eat different foods to program ADA to accurately identify each item on a plate, and then perform the optimal movements that result in successfully skewering each item and delivering it to the recipient’s mouth. For example, unlike a strawberry, which is sturdier, the softness of a piece of banana required skewering at an angle to avoid the piece simply sliding off the fork.

Strips of celery required a specific approach for both skewering and delivering the food to the mouth properly. The robot was taught to stick the fork into one end of the strip, and then lift and turn the piece so that the opposite end of the celery, clear of the fork’s sharp tines, was cleanly presented to the recipient.

The group’s work is aimed at helping people who are unable to perform essential tasks live more independently. Says Srinivasa, ”We think our technologies can help those dependent on a caregiver to feed them every day to regain some independence and control over their lives.”

In addition to that important goal, Srinivasa points out that ADA can also be a help to often overtaxed caregivers, who, in this case could set up the food and robot and then attend to other tasks or focus on socializing with the clients. “In this way we see ADA as a win-win for caregivers and their clients that will ultimately improve the experience for everyone involved—especially as the country’s population ages and the need to optimize strategies for their care increases.”

Subscribe to our newsletter

Related articles

Researcher add salt to Pepper

Researcher add salt to Pepper

Researchers performed a detailed security assessment of Pepper, a commercial humanoid robot. They found that the robot is frighteningly easy to hack.

Companion robot to support primary care providers

Companion robot to support primary care providers

Intuition Robotics announced a significant expansion of ElliQ, their AI-driven companion robot, to enable the extension of primary care teams' presence into older adults' homes.

Quarantine: Robot enables communication between people

Quarantine: Robot enables communication between people

Researchers have designed a telepresence robot that enables people suffering from COVID-19 to talk to their loved ones.

When the robot smiles back

When the robot smiles back

Researchers use AI to teach robots to make appropriate reactive human facial expressions, an ability that could build trust between humans and their robotic co-workers and care-givers.

Robot touch makes you feel better

Robot touch makes you feel better

People who were touched by a humanoid robot while conversing with it subsequently reported a better emotional state and were more likely to comply with a request from the robot.

Robots can draw out reluctant participants in groups

Robots can draw out reluctant participants in groups

Can a robot draw a response simply by making “eye” contact, even with people who are less inclined to speak up. A recent study suggests that it can.

Robots encourage risk-taking behaviour in humans

Robots encourage risk-taking behaviour in humans

“The Robot made me do it” - research has shown robots can encourage humans to take greater risks in a simulated gambling scenario than they would if there was nothing to influence their behaviours.

Could robots replace real therapy dogs?

Could robots replace real therapy dogs?

According to new research, robotic animals could be the 'pawfect' replacement for our real-life furry friends.

Designing soft and sensitive robotic fingers

Designing soft and sensitive robotic fingers

Scientists have designed a 3D printable soft robotic finger containing a built-in sensor with adjustable stiffness.

Popular articles

Subscribe to Newsletter