Ankle exoskeleton increase walking speed

In lab tests, researchers found that an optimized ankle exoskeleton system increased participants’ walking speed by about 40 percent compared with their regular speed. The researchers hope someday to help restore walking speed in older adults.

Photo
Stanford engineers find ankle exoskeletons enable faster walking. Screenshot from video.
Source: Stanford University

Being unable to walk quickly can be frustrating and problematic, but it is a common issue, especially as people age. Noting the pervasiveness of slower-than-desired walking, engineers at Stanford University have tested how well a prototype exoskeleton system they have developed—which attaches around the shin and into a running shoe—increased the self-selected walking speed of people in an experimental setting.

The exoskeleton is externally powered by motors and controlled by an algorithm. When the researchers optimized it for speed, participants walked, on average, 42% faster than when they were wearing normal shoes and no exoskeleton. "We were hoping that we could increase walking speed with exoskeleton assistance, but we were really surprised to find such a large improvement," said Steve Collins, associate professor of mechanical engineering at Stanford and senior author of the paper. "Forty percent is huge."

For this initial set of experiments, the participants were young, healthy adults. Given their impressive results, the researchers plan to run future tests with older adults and to look at other ways the exoskeleton design can be improved. They also hope to eventually create an exoskeleton that can work outside the lab, though that goal is still a ways off.

"My research mission is to understand the science of biomechanics and motor control behind human locomotion and apply that to enhance the physical performance of humans in daily life," said Seungmoon Song, a postdoctoral fellow in mechanical engineering and lead author of the paper. "I think exoskeletons are very promising tools that could achieve that enhancement in physical quality of life."

Walking in the loop

The ankle exoskeleton system tested in this research is an experimental emulator that serves as a testbed for trying out different designs. It has a frame that fastens around the upper shin and into an integrated running shoe that the participant wears. It is attached to large motors that sit beside the walking surface and pull a tether that runs up the length of the back of the exoskeleton. Controlled by an algorithm, the tether tugs the wearer's heel upward, helping them point their toe down as they push off the ground.

For this study, the researchers had 10 participants walk with five different modes of operation. They walked in normal shoes without the exoskeleton, with the exoskeleton turned off and with the exoskeleton turned on with three different modes: optimized for speed, optimized for energy use, and a placebo mode adjusted to make them walk more slowly. In all the tests, participants walked on a treadmill that adapts to their speed.

The mode that was optimized for speed—which resulted in the 42% increase in walking pace—was created through a human-in-the-loop process. An algorithm repeatedly adjusted the exoskeleton settings while the user walked, with the goal of improving the user's speed with each adjustment. Finding the speed-optimized mode of operation took about 150 rounds of adjustment and two hours per person.

In addition to greatly increasing walking speed, the speed-optimized mode also reduced energy use, by about 2% per meter traveled. However, that result varied widely from person to person, which is somewhat expected, given that it was not an intentional feature of that exoskeleton mode.

"The study was designed to specifically answer the scientific question about increasing walking speed," Song said. "We didn't care too much about the other performance measures, like comfort or energy. However, seven out of 10 participants not only walked faster but consumed less energy, which really shows how much potential exoskeletons have for helping people efficiently."

The settings that were optimized specifically for energy use were borrowed from a previous experiment. In the current study, this mode decreased energy use more than the speed-optimized settings but did not increase speed as much. As intended, the placebo mode both slowed down participants and boosted their energy use.

Better, faster, stronger

Now that the researchers have attained such significant speed assistance, they plan to focus future versions of the ankle exoskeleton emulator on reducing energy use consistently across users, while also being more comfortable.

In considering older adults specifically, Collins and his lab wonder whether future designs could reduce pain caused by weight on joints or improve balance. They plan to conduct similar walking tests with older adults and hope those provide encouraging results as well. "A 40% increase in speed is more than the difference between younger adults and older adults," said Collins. "So, it's possible that devices like this could not only restore but enhance self-selected walking speed for older individuals and that's something that we're excited to test next."

The researchers published their results in IEEE Transactions on Neural Systems and Rehabilitation Engineering.

Subscribe to our newsletter

Related articles

Harnessing AI to discover new drugs

Harnessing AI to discover new drugs

Artificial intelligence can recognise the biological activity of natural products in a targeted manner.

Making AI understandable – constructing explanation processes

Making AI understandable – constructing explanation processes

Human-machine interaction is complex. Researchers investigate a new form of interaction between humans and machines.

Would we be able to control superintelligent machines?

Would we be able to control superintelligent machines?

Using theoretical calculations, scientists showed that it would not be possible to control a superintelligent AI.

AIs detect diabetic eye disease inconsistently

AIs detect diabetic eye disease inconsistently

Although some artificial intelligence software tested reasonably well, only one met the performance of human screeners.

Machine learning predicts anti-cancer drug efficacy

Machine learning predicts anti-cancer drug efficacy

With the advent of pharmacogenomics, machine learning research is well underway to predict patients' drug response that varies by individual from the algorithms derived from previously collected data on drug responses.

AI models could predict outcomes in trauma

AI models could predict outcomes in trauma

AI has shown early success in improving survival and outcomes in traffic accident victims transported by ambulance and in predicting survival after liver transplantation.

Machine learning system sorts out materials' databases

Machine learning system sorts out materials' databases

Scientists have used machin -learning to organize the chemical diversity found in the ever-growing databases for the popular metal-organic framework materials.

Sarcopenia: Robotic muscles could turn back body clock

Sarcopenia: Robotic muscles could turn back body clock

Loss of strength and muscle wastage is currently an unavoidable part of getting older and has a significant impact on health and quality of life.

Exoskeleton research marches forward

Exoskeleton research marches forward

Researchers developed a new measurement method to test whether an exoskeleton and the person wearing it are moving smoothly and in harmony.

Popular articles

Photo

The “RoboWig” untangle your hair

Nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.

Subscribe to Newsletter