A computational rendering of the biohybrid respiratory simulator shows the...
A computational rendering of the biohybrid respiratory simulator shows the modular device, including organic swine lungs, artificial muscles and a diaphragm made of thermoplastic and elastomeric materials. It was built to accurately replicate respiratory mechanics and precisely track pressure, flow and volume to test innovative medical implants and replicate changes in the system introduced by disease or ventilator use.
Source: Credit: Image courtesy of the authors

Biohybrid model recreates respiration mechanics

Using soft robotic materials, scientists created a high-fidelity respiratory simulator that accurately represents the interplay between between the diaphragm, abdomen and lungs.

Benchtop tools for studying the respiratory system misrepresent the interdependence between the diaphragm, abdomen and lungs. Meanwhile, computational models often hide the mechanisms in a black box computation, without a clear picture of what transpires in the process.

This means students form a poor understanding of respiratory mechanisms and makes it hard to train clinicians for real scenarios or prototype embeddable medical devices. “If students can visualize pleural and abdominal pressure curves being generated in real time, while simultaneously observing diaphragm motion and lung inflation and deflation, it helps them establish an mental model, which can be called on and interrogated for different conditions, both physiological and pathological,” author Ellen Roche said.

In a paper published in APL Bioengineering, by AIP Publishing, Roche and co-authors created a high-fidelity respiratory simulator that accurately represents the interplay between the abdomen, diaphragm, lungs and pleural space, the fluid-filled membrane surrounding the thorax and lungs. “We are excited about using synthetic actuators to actuate organic material, because we can preserve tissue structures while achieving reliable, tunable and deterministic motion with a soft robotic structure,” Roche said. “Our ultimate goal is to develop a model that combines the mechanics of the respiratory and cardiovascular systems to elucidate and characterize their interdependency and to test new therapeutic strategies.”

The model they created, using swine lungs, soft robotic materials and artificial muscles, allows precise tuning of pressure in each part of the system, so specific disease conditions can be tested to show how even minor changes affect overall respiratory function.

For example, the model was successfully used to test three types of pneumothorax, when air enters the pleural space, and obstructive lung disease by increasing flow resistance in the airway. The authors also tested a patch for repairing lung punctures and showed the system of sensors measuring flow, volume and pressure in the model is able to precisely measure airway pressure and pleural pressure.

The model, which is completely modular with parts that can be removed or replaced, also proved extremely useful for testing ventilator-only respiration by removing the elastomeric diaphragm. “We are currently using it as a realistic testbed to test different ventilator options that have been developed for the COVID-19 pandemic,” Roche said.

The authors plan to add cardiovascular components to their model to further increase its usability to study complex problems involving respiratory and cardiovascular systems.

Subscribe to our newsletter

Related articles

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

Researchers successfully bioprint healthy new tissue

Researchers successfully bioprint healthy new tissue

New muscle has successfully been created in mice using a minimally invasive technique dubbed ‘intravital 3D bioprinting’.

Washable textile coating repels viruses

Washable textile coating repels viruses

Researchers have created a textile coating that can not only repel liquids like blood and saliva but can also prevent viruses from adhering to the surface.

VR and lightweight robot simulate hip replacement

VR and lightweight robot simulate hip replacement

Researchers have developed a virtual reality simulator for a particularly critical step in hip joint implantation.

Producing human tissue in space

Producing human tissue in space

The University of Zurich has sent adult human stem cells to the International Space Station to explore the production of human tissue in weightlessness.

Transparent human organs allow 3D maps at the cellular level

Transparent human organs allow 3D maps at the cellular level

For the first time, researchers managed to make intact human organs transparent. Using microscopic imaging they could revealed underlying complex structures of the see-through organs at the cellular level.

Endoscopic prostate surgery performed on human-like phantom

Endoscopic prostate surgery performed on human-like phantom

Scientists have made a decisive contribution to improving complex surgical training by developing a very realistic prostate phantom.

Teaching an organ-on-a-chip to see

Teaching an organ-on-a-chip to see

Organ-on-a-chip technology has the potential to revolutionize drug development. Researchers have succeeded in putting various types of tissue onto chips.

One step closer to bioprinting the human heart

One step closer to bioprinting the human heart

Researchers have developed a technique to 3D bioprint collagen, allowing them to fabricate fully functional components of the human heart.

Popular articles