Bionic exoskeleton could help people walk again

Researchers at University of Pittsburgh are combining this robotic technology of an exoskeleton with sensory technology to make paralyzed muscles work with the use of ultrasound. The team recently created a prototype hybrid exoskeleton.

Photo
Nitin Sharma, associate professor of mechanical engineering and materials science at the University of Pittsburgh Swanson School of Engineering, tries on the prototype exoskeleton.
Source: Courtesy of Sharma Lab

The hybrid aspect comes from the two types of technology being used in this project, with electrodes sending ultrasound noninvasively to make paralyzed muscles work while the battery-powered bionic exoskeleton provides additional support to promote movement. “We’re trying to create a situation where the patient controls the exoskeleton, not the other way around,” said Nitin Sharma, associate professor of mechanical engineering and materials science in Pitt’s Swanson School of Engineering and the team’s principal investigator.

Current rehabilitative technologies predict remaining muscle function and how much assistance is needed for muscle movement, a process called electromyography. Correctly measuring how much assistance any rehabilitative device should provide is a challenge with this method, as it is limited to large muscle groups.

However, Sharma’s research uses ultrasound, rather than electricity, delivered through sensors placed on the body. This aims to more accurately measure how much movement a target muscle group can generate. Ultrasound stimulates the tissue beneath the skin’s surface using high-frequency sound waves that cannot be heard by humans. While the ultimate goal is to coordinate muscle movement for the entire leg, Sharma’s team is focusing on the ankle for now because it is “much more complicated” than other parts of the leg, Sharma said. “Unlike the knee joint which moves in one direction, the ankle can be flexed in multiple directions and different muscles activate that joint,” Sharma said. “With electromyography, it’s very challengi

Sensory technology

The prototype exoskeleton is being developed at Pitt’s Neuromuscular Control and Robotics Laboratory, also known as the Sharma Lab, and is wired to a power source. The final product will be able to function with a portable battery. In addition, the team is working on designs that will integrate these exoskeletons with wheelchairs other mobility technologies.

Sharma said the team will next find out whether the exoskeleton affects neurological behavior and muscle mass in the legs. The team also aims to slim down the 17 kilogram (37.5 pounds) prototype to make the exoskeleton more user friendly. “We added knee motors to the design, making it heavier. But we will be replacing many of our parts with aluminum and carbon fiber parts in the near future, so we are targeting a weight of under 12 kilograms (about 26.5 pounds) with the upgrades,” said Albert Dodson, a research associate in the Sharma Lab. “Exoskeletons are heavy, so what we’re proposing is that since people will be using their muscles, you don’t need these big exoskeletons,” Sharma said. “And if you use both your own muscles and these exoskeletons, you could also save power and walk for longer periods of time.”

Subscribe to our newsletter

Related articles

Bionic suit helps paralyzed patients stand and walk again

Bionic suit helps paralyzed patients stand and walk again

Patients undergoing physical rehabilitation at Rush for paralyzing injuries are being aided by a robotic suit designed to help raise people to full height and walk.

A personalized exosuit for walking

A personalized exosuit for walking

A new approach in which robotic exosuit assistance can be calibrated to an individual.

How 5 upper body exoskeletons support natural movements

How 5 upper body exoskeletons support natural movements

We present five upper body exoskeletons that might help restore natural hand or limb movements.

Robot-assisted therapy can help treat stroke survivors

Robot-assisted therapy can help treat stroke survivors

Exoskeleton-assisted rehabilitation can be beneficial in treating stroke survivors.

Multiple sclerosis: Exoskeleton therapy improves mobility

Multiple sclerosis: Exoskeleton therapy improves mobility

Experts at Kessler Foundation led the first pilot randomized controlled trial of robotic-exoskeleton assisted exercise rehabilitation effects on mobility, cognition, and brain connectivity in people with substantial MS-related disability.

FDA authorized brain-computer interface for stroke rehab

FDA authorized brain-computer interface for stroke rehab

Neurolutions IpsiHand exoskeleton uniquely leverages brain-computer interface technology for chronic stroke rehabilitation

Exoskeleton training expands options for stroke rehab

Exoskeleton training expands options for stroke rehab

Researchers have demonstrated that high-dose therapy gait training using robotic exoskeletons may aid early rehabilitation for acute stroke.

Exoskeleton and brain-machine interface boost stroke rehab

Exoskeleton and brain-machine interface boost stroke rehab

Researchers have developed a system that combines a brain-computer interface and a robotic arm that responds to the actual intentions of treated patients.

Ultra-thin sensitive strain sensors

Ultra-thin sensitive strain sensors

Researchers have developed a new range of nanomaterial strain sensors that are 10 times more sensitive when measuring minute movements, compared to existing technology.

Popular articles

Subscribe to Newsletter