Schematic illustration of the concept for a breast reconstructed using an...
Schematic illustration of the concept for a breast reconstructed using an implant.
Source: Courtesy Lindau and Bensmaia

Breast cancer: restoring sensation via implant

The Bionic Breast Project from the University of Chicago applies bionic technology to restore post-mastectomy breast function.

About half of Prof. Stacy Lindau's patients over the last decade have had breast cancer and express new difficulties with sexual function during and after treatment. That's now several hundreds of women. "One of the common problems women complain of is the loss of sensation in their breast after mastectomy with reconstruction," or even after just a lumpectomy, said Lindau, a leading University of Chicago professor of obstetrics and gynecology. "In the U.S. alone, 100,000 women a year have one or both breasts removed. That's a lot of women losing an important body part."

Lindau set out looking for evidenced-based solutions to these problems and came up empty-handed. So she's now leading the Bionic Breast Project, an interdisciplinary research program at UChicago applying bionic technologies to restore post-mastectomy breast function. "It was with these observations and substantial suffering among my patients that I went looking for a solution to the problem of lost sensation and more generally, loss of function in the female breast in the context of breast cancer," Lindau said.


In looking for answers, she came across media stories about successes with penile transplants. What struck her about this coverage was the rarity of the conditions that would warrant this transplant, in relation to the significant investment that has been made in restoring penile function. Additionally, Lindau said she was given hope by the fact that the success of these procedures was being judged not just by the cosmetic appearance, but also by three aspects of penile function: urinary, sexual and reproductive function.

Advances in bionics emerged as a good place to look, and Lindau quickly connected with Prof. Sliman Bensmaia, the James and Karen Frank Family Professor of Organismal Biology and Anatomy. Bensmaia, said the project dovetails nicely with his previous work in which he developed a robotic arm that allowed a paralyzed man to control the arm with his brain and feel the sensation of touch. However, the target population is much larger.

Recommended article

Using some of the concepts developed for the bionic hand, the researchers plan to embed a flexible sensor array under the skin of mastectomy patients. Activated any time the nipple-areolar complex is touched, the sensor array sends signals to a series of electrodes that stimulate the patient's residual intercostal nerves—nerves that used to interface with the breast. "You can create vivid sensations of touch by electrically activating the nerves of the hand," explained Bensmaia, noting that the Bionic Breast will foster re-embodiment of the patient's chest. "It can feel like a part of their body again," he said.

The work is backed by the National Cancer Institute R21 grant mechanism, which is intended to encourage exploratory research and gives the researchers two years to establish a working relationship and do the foundational and development work needed to warrant a longer-term, larger-scale investment. As part of this, the researchers also are collating a list of subjective and objective criteria by which to measure breast function. "If we want to study the relationship between breast cancer treatment and breast function, we need a measure to assess breast function—and that did not exist," said Lindau, whose lab is leading this work with input from a patient advisory board that has been helping define the right questions to ask and the right people with which to collaborate.

While Lindau's team is well on its way to developing a measure that can also be used by others, Bensmaia is in parallel conducting the physical testing to quantify breast sensation. His team has developed a rig that enables the researchers to precisely quantify sensory perception in the breast—an adaptation of one used in their work studying hand sensation.

Recommended article

Testing the sensor technology subcutaneously for an extended period of time is the last technology development piece left to complete. Sihong Wang, an assistant professor at the UChicago Pritzker School of Molecular Engineering, is developing the tissue-like pressure sensors that can be structurally and functionally integrated into the Bionic Breast. "Such sensors can work similarly as the sensing receptors in the breast for sensing physical contact/movement, by converting it to an electrical signal," Wang said. "Our major steps are to build such sensors with tissue-like soft materials that are biocompatible for implantation, and to use the electrical signal to communicate with the artificial peripheral neural devices that Sliman will build."

Mastectomy and reconstruction often happen in multiple stages, during which the researchers can implement the sensor array, giving them the opportunity to prototype without subjecting patients to additional surgeries. "It's much less invasive than bionic hands, which require a special surgery to make that work," Bensmaia said.

The researchers also plan to apply for an additional grant, which will help lay the foundation for studies in animal models and humans. "This has the clearest path forward in just about anything I've ever done. All the components are in place," Bensmaia said. "I am very confident this is going to work and help millions of women around the world."

Subscribe to our newsletter

Related articles

Bringing the bling to improve implants

Bringing the bling to improve implants

Researchers have for the first time successfully coated 3D printed titanium implants with diamond.

3D printed knee implant for arthritis sufferers

3D printed knee implant for arthritis sufferers

A groundbreaking new treatment that uses 3D printed implants and that could bring relief to tens of thousands of knee osteoarthritis sufferers has received approval to be trialled in UK patients.

Hip implant simulator for virtual surgery training

Hip implant simulator for virtual surgery training

The team of the Dynamic HIPS are working on a hip replacement simulator that will help future surgeons to practice the intervention and develop a reality-based feeling for the procedure.

Transient pacemaker dissolves in body

Transient pacemaker dissolves in body

Researchers have developed the first-ever transient pacemaker — a wireless, battery-free, fully implantable pacing device that disappears after it’s no longer needed.

Shape-changing implants to treat severe pain

Shape-changing implants to treat severe pain

An ultra-thin, inflatable device that uses a combination of soft robotic fabrication techniques and microfluidics can be used to treat the most severe forms of pain without the need for invasive surgery.

3D biocomposites can repair large bone defects

3D biocomposites can repair large bone defects

Loosening hip implants can cause major damage to the bone and a simple replacement won’t suffice to carry the load during movements. Researchers have turned to bioprinting to solve this problem.

Bionics: better hearing with optical cochlear implants

Bionics: better hearing with optical cochlear implants

Scientists at The German Primate Center want to use genetic engineering methods to improve cochlear implants.

Bionic eye: Computer model fosters improvements

Bionic eye: Computer model fosters improvements

Researchers develop signals that could bring color vision and improved clarity to prosthesis for the blind.

Enhanced safety and precision with semi-automatic milling systems

Enhanced safety and precision with semi-automatic milling systems

Professor Dr Henning Windhagen is a great fan of semi-automatic systems in the OR that help with implants but leave the surgeon in the driver’s seat.

Popular articles

Photo

The “RoboWig” untangle your hair

Nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.

Subscribe to Newsletter