Designing soft and sensitive robotic fingers

Designing soft and sensitive robotic fingers

Scientists at Ritsumeikan University, Japan, have designed a 3D printable soft robotic finger containing a built-in sensor with adjustable stiffness.

Although robotics has reshaped and even redefined many industrial sectors, there still exists a gap between machines and humans in fields such as health and elderly care. For robots to safely manipulate or interact with fragile objects and living organisms, new strategies to enhance their perception while making their parts softer are needed. In fact, building a safe and dexterous robotic gripper with human-like capabilities is currently one of the most important goals in robotics.

One of the main challenges in the design of soft robotic grippers is integrating traditional sensors onto the robot's fingers. Ideally, a soft gripper should have what's known as proprioception—a sense of its own movements and position—to be able to safely execute varied tasks. However, traditional sensors are rigid and compromise the mechanical characteristics of the soft parts. Moreover, existing soft grippers are usually designed with a single type of proprioceptive sensation; either pressure or finger curvature.

To overcome these limitations, scientists at Ritsumeikan University, Japan, have been working on novel soft gripper designs under the lead of Associate Professor Mengying Xie. In their latest study published in Nano Energy, they successfully used multimaterial 3D printing technology to fabricate soft robotic fingers with a built-in proprioception sensor. Their design strategy offers numerous advantages and represents a large step toward safer and more capable soft robots.

The soft finger has a reinforced inflation chamber that makes it bend in a highly controllable way according to the input air pressure. In addition, the stiffness of the finger is also tunable by creating a vacuum in a separate chamber. This was achieved through a mechanism called vacuum jamming, by which multiple stacked layers of a bendable material can be made rigid by sucking out the air between them. Both functions combined enable a three-finger robotic gripper to properly grasp and maintain hold of any object by ensuring the necessary force is applied.

Most notable, however, is that a single piezoelectric layer was included among the vacuum jamming layers as a sensor. The piezoelectric effect produces a voltage difference when the material is under pressure. The scientists leveraged this phenomenon as a sensing mechanism for the robotic finger, providing a simple way to sense both its curvature and initial stiffness (prior to vacuum adjustment). They further enhanced the finger's sensitivity by including a microstructured layer among the jamming layers to improve the distribution of pressure on the piezoelectric material.

The use of multimaterial 3D printing, a simple and fast prototyping process, allowed the researchers to easily integrate the sensing and stiffness-tuning mechanisms into the design of the robotic finger itself. "Our work suggests a way of designing sensors that contribute not only as sensing elements for robotic applications, but also as active functional materials to provide better control of the whole system without compromising its dynamic behavior," says Prof Xie. Another remarkable feature of their design is that the sensor is self-powered by the piezoelectric effect, meaning that it requires no energy supply—essential for low-power applications.

Overall, this exciting new study will help future researchers find new ways of improving how soft grippers interact with and sense the objects being manipulated. In turn, this will greatly expand the uses of robots, as Prof Xie indicates: "Self-powered built-in sensors will not only allow robots to safely interact with humans and their environment, but also eliminate the barriers to robotic applications that currently rely on powered sensors to monitor conditions."

Subscribe to our newsletter

Related articles

A 3D printed, sweating robot muscle

A 3D printed, sweating robot muscle

Researchers used 3D printing to create a soft robot muscle that can regulate its temperature through sweating.

Ultra-thin sensitive strain sensors

Ultra-thin sensitive strain sensors

Researchers have developed a new range of nanomaterial strain sensors that are 10 times more sensitive when measuring minute movements, compared to existing technology.

Microrobots of metal and plastic

Microrobots of metal and plastic

Researchers have developed a technique for manufacturing micrometre-​long machines by interlocking multiple materials in a complex way.

3D printing strong and tough hydrogels

3D printing strong and tough hydrogels

Skin and cartilage are both strong and flexible – properties that are hard to replicate in artificial materials. But a new fabrication process brings lifelike synthetic polymers a step closer.

'Skin' sensor gives robots human sensation

'Skin' sensor gives robots human sensation

Researchers at Cornell University have developed stretchable sensors that gives robots and VirtualReality a human touch.

Sensor for smart textiles survives hammers

Sensor for smart textiles survives hammers

An ultra-sensitive, resilient strain sensor that can be embedded in textiles and soft robotic systems survived being tested by a washing machine and a car.

E-skin: Engineers imitate hands to make better sensors

E-skin: Engineers imitate hands to make better sensors

Researchers have developed “electronic skin” sensors capable of mimicking the dynamic process of human motion.

Scientists get soft on 3D printing

Scientists get soft on 3D printing

Researchers have developed a new method of 3D printing gels and other soft materials.

Versatile material could build realistic prosthetics

Versatile material could build realistic prosthetics

Researchers have created synthetic materials with morphing abilities that can be 3D printed and self-heal within seconds.

Popular articles