FDA authorized brain-computer interface for stroke rehab

Neurolutions IpsiHand exoskeleton uniquely leverages brain-computer interface technology for chronic stroke rehabilitation

Photo
Eric Leuthardt, MD, professor of neurosurgery at Washington University School of Medicine, models a device that helps people disabled by stroke regain significant control over their arm and hand function by using their minds
Source: Elizabethe Holland Durando/School of Medicine

A first-of-its kind device that helps people disabled by stroke regain significant control over their arm and hand function by using their minds has received market authorization from the Food and Drug Administration (FDA). The IpsiHand Upper Extremity Rehabilitation System, developed by Neurolutions Inc.—a Washington University in St. Louis startup company—leverages brain-computer interface (BCI) technology licensed from the university.

The IpsiHand system includes a wearable robotic exoskeleton that fits over a patient's hand and wrist and assists with opening and closing the hand based on the patient's thoughts. By mentally controlling the IpsiHand exoskeleton with the aid of BCI technology, patients may improve their upper extremity motor function, giving them more purposeful and effective movement of the affected hand, wrist and arm. Designed for use in the home or clinic, the IpsiHand system may assist stroke patients in recovering critical abilities such as feeding themselves, grasping objects and performing other everyday tasks, and is the first stroke-rehabilitation device that relies on a brain-computer interface.

The IpsiHand system has received "Breakthrough Device" designation from the FDA and has been granted De Novo marketing authorization by the FDA as well. The device is not yet available to patients, but Neurolutions is preparing to bring the device to market.

The underlying BCI technology was spearheaded by Eric Leuthardt, MD, professor of neurosurgery at Washington University School of Medicine. He co-founded Neurolutions in 2007 with Daniel Moran, Ph.D., professor of biomedical engineering at the university's McKelvey School of Engineering, to further develop the technology. Founding CEO Kern Bhugra was brought on board several years later. Early St. Louis-based investors Biogenerator and Ascension Ventures were critical for the company's development and technical advancement. The company is currently led by CEO Leo Petrossian, Ph.D., and chairman of the board Fred Khosravi.

Photo
IpsiHand also has been granted U.S. FDA Breakthrough Device Designation.
Source: Neurolutions, Inc.

IpsiHand is intended for stroke survivors who have chronic difficulty in moving or controlling an arm and hand. Most patients recover some movement in the first few weeks after a stroke, but improvement generally tapers off by six months, leading to stalls in progress.

"Generally, any motor impairments experienced by a patient six months after a stroke have been considered permanent," said Leuthardt, who is an inventor of the technology that underlies the device. Leuthardt, who treats patients at Barnes-Jewish Hospital, is also professor of neuroscience, of biomedical engineering, and of mechanical engineering and applied science. "What we've found with this device is that many patients can get a meaningful improvement in recovery of upper extremity movement when we wouldn't expect them to get any. That's not really true for any of the current therapies for stroke aimed at restoring function after the initial recovery period. One of the key elements that made it a breakthrough was the innovative use of a brain-computer interface. It's also what gets us incredibly excited to be able to create a novel solution that may help millions of stroke patients."

The device is designed for use in the home as well as in the clinic. In clinical trials, stroke patients who wore the device and engaged in the therapy for approximately five days a week for 12 weeks showed statistically significant improvement in motor control. Such an improvement could mean the difference between being able to put on a pair of pants independently or being unable to do so.

Subscribe to our newsletter

Related articles

Exoskeleton and brain-machine interface boost stroke rehab

Exoskeleton and brain-machine interface boost stroke rehab

Researchers have developed a system that combines a brain-computer interface and a robotic arm that responds to the actual intentions of treated patients.

Robot-assisted therapy can help treat stroke survivors

Robot-assisted therapy can help treat stroke survivors

Exoskeleton-assisted rehabilitation can be beneficial in treating stroke survivors.

Exoskeleton training expands options for stroke rehab

Exoskeleton training expands options for stroke rehab

Researchers have demonstrated that high-dose therapy gait training using robotic exoskeletons may aid early rehabilitation for acute stroke.

Exosuit makes stroke survivors walk farther

Exosuit makes stroke survivors walk farther

Research study in stroke survivors with chronic hemiparesis shows soft exosuit technology to bring immediate improvements in walking speed and endurance tests.

Stroke patients: robotic arm aids in rehabilitation

Stroke patients: robotic arm aids in rehabilitation

The Hong Kong Polytechnic University (PolyU) recently developed a robotic arm to facilitate self-help and upper-limb mobile rehabilitation for stroke patients.

‘Smart’ robotic system could offer home-based rehabilitation

‘Smart’ robotic system could offer home-based rehabilitation

An engineer is leading a team of researchers, health care providers and industry to fast-track the commercialization of a groundbreaking robotic rehabilitation system.

Gait training with exoskeleton may improve function after stroke

Gait training with exoskeleton may improve function after stroke

Preliminary findings by Kessler researchers show that the use of a robotic exoskeleton during inpatient rehabilitation for acute stroke may improve function.

Multiple sclerosis: Exoskeleton therapy improves mobility

Multiple sclerosis: Exoskeleton therapy improves mobility

Experts at Kessler Foundation led the first pilot randomized controlled trial of robotic-exoskeleton assisted exercise rehabilitation effects on mobility, cognition, and brain connectivity in people with substantial MS-related disability.

Ultra-thin sensitive strain sensors

Ultra-thin sensitive strain sensors

Researchers have developed a new range of nanomaterial strain sensors that are 10 times more sensitive when measuring minute movements, compared to existing technology.

Popular articles

Photo

The “RoboWig” untangle your hair

Nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.

Subscribe to Newsletter