Elastohydrodynamic lubrication occurs when two solid surfaces come into contact...
Elastohydrodynamic lubrication occurs when two solid surfaces come into contact with a thin layer of fluid between them.
Source: Lilian Hsiao

New law of physics helps robots grasp the friction of touch

Researchers have described a new law of physics that accounts for elastohydrodynamic lubrication (EHL) friction, which should advance a wide range of robotic technologies.

Although robotic devices are used in everything from assembly lines to medicine, engineers have a hard time accounting for the friction that occurs when those robots grip objects - particularly in wet environments. Researchers have now discovered a new law of physics that accounts for this type of friction, which should advance a wide range of robotic technologies.

"Our work here opens the door to creating more reliable and functional haptic and robotic devices in applications such as telesurgery and manufacturing," says Lilian Hsiao, an assistant professor of chemical and biomolecular engineering at North Carolina State University.

At issue is something called elastohydrodynamic lubrication (EHL) friction, which is the friction that occurs when two solid surfaces come into contact with a thin layer of fluid between them. This would include the friction that occurs when you rub your fingertips together, with the fluid being the thin layer of naturally occurring oil on your skin. But it could also apply to a robotic claw lifting an object that has been coated with oil, or to a surgical device that is being used inside the human body.

One reason friction is important is because it helps us hold things without dropping them. "Understanding friction is intuitive for humans - even when we're handling soapy dishes," Hsiao says. "But it is extremely difficult to account for EHL friction when developing materials that controls grasping capabilities in robots."

To develop materials that help control EHL friction, engineers would need a framework that can be applied uniformly to a wide variety of patterns, materials and dynamic operating conditions. And that is exactly what the researchers have discovered. "This law can be used to account for EHL friction, and can be applied to different soft systems - as long as the surfaces of the objects are patterned," Hsiao says.

In this context, surface patterns could be anything from the slightly raised surfaces on the tips of our fingers to grooves in the surface of a robotic tool.

The new physical principle, developed jointly by Hsiao and her graduate student Yunhu Peng, makes use of four equations to account for all of the physical forces at play in understanding EHL friction. In the paper, the research team demonstrated the law in three systems: human fingers; a bio-inspired robotic fingertip; and a tool called a tribo-rheometer, which is used to measure frictional forces. Peng is first author of the paper.

"These results are very useful in robotic hands that have more nuanced controls for reliably handling manufacturing processes," Hsiao says. "And it has obvious applications in the realm of telesurgery, in which surgeons remotely control robotic devices to perform surgical procedures. We view this as a fundamental advancement for understanding touch and for controlling touch in synthetic systems."

The paper is published in Nature Materials.

Subscribe to our newsletter

Related articles

DNA robots designed in minutes instead of days

DNA robots designed in minutes instead of days

Someday, scientists believe, tiny DNA-based robots and other nanodevices will deliver medicine inside our bodies, detect the presence of deadly pathogens, and help manufacture increasingly smaller electronics.

Robotics: Soft pumps power artificial muscles

Robotics: Soft pumps power artificial muscles

Robotic clothing that could help people to move more easily is a step closer to reality thanks to the development of a lightweight power system for soft robotics.

Electronic skin – the next generation of wearables

Electronic skin – the next generation of wearables

Electronic skins will play a significant role in monitoring, personalized medicine, prosthetics, and robotics.

Tiny bubbles help create soft robotics

Tiny bubbles help create soft robotics

Researchers use bubble casting to create soft robotics capable of grabbing and lifting a ball when inflated with air.

ReSkin helps to discover a sense of touch

ReSkin helps to discover a sense of touch

Carnegie Mellon University and Meta AI (formerly Facebook AI) want to increase the sense of touch in robotics, wearables, smart clothing and AI.

Graphene – the versatile wonder material

Graphene – the versatile wonder material

Graphene has a vast variety of practical applications in the creation of new materials. But what exactly is graphene and what makes it so special?

Touch screens to enable users to 'feel' objects

Touch screens to enable users to 'feel' objects

Reseachers are working to better define how the finger interacts with a device with the hope of aiding in the further development of technology that goes beyond sensing and reacting to your touch.

Shape-shifting materials have infinite possibilities

Shape-shifting materials have infinite possibilities

The material can take any possible shape and could be used in robotics and biotechnology.

A controllable nanoscale gas-liquid interface

A controllable nanoscale gas-liquid interface

Researchers have fabricated the first controllable gas-liquid interface at the nanoscale.

Popular articles

Subscribe to Newsletter