3D rendered image of the new prosthesis rotating to throw a ball.
3D rendered image of the new prosthesis rotating to throw a ball.
Source: University of Göttingen

New prosthetic limbs are self-learning bionic hands

Scientists at Imperial College London and the University of Göttingen have used machine learning to improve the performance of prosthetic hands. After testing their prototype on five amputees, they found that new machine learning-based control was far better at providing natural, fluid movements than the currently available technology. The researchers said the findings, could spark a “new generation of prosthetic limbs.”

Professor Dario Farina, senior author of the paper from Imperial’s Department of Bioengineering, said: “When designing bionic limbs, our main goal is to let patients control them as naturally as though they were their biological limbs. This new technology takes us a step closer to achieving this.”

Current technology works by directly controlling the prosthetic motors with a few muscular signals. The new bionic hand, developed in collaboration with Imperial and the University of Göttingen, uses a human-machine interface that interprets the patient’s intentions and sends commands to the artificial limb. It contains eight electrodes that pick up weak electrical signals from the patient’s stump, before amplifying them and sending them to a mini-computer, also located in the prosthetic.

The mini-computer then runs the machine learning algorithm to interpret the signals, before commanding the hand’s motors to move in the way the patient wants. Patients found they were able to easily rotate the wrist and open the hand either simultaneously or separately. They also found the movements far more natural than the conventional bionic limbs they were used to.

In addition to types of function, patients could also control the speed of individual movement independently of other movements. For example, patients could turn the hand slowly but open it quickly at the same time. The researchers say this is an essential component for movements that feel natural.

Prior to use, the patient and bionic hand underwent training so the machine learning algorithm could ‘learn’ how to interpret their unique electronic signals. Professor Farina hopes to eliminate the need for this in future prototypes, without sacrificing personalisation to specific patients. “The new bionic hand is not only more natural but it is also superior in terms of functionality in daily tasks than what’s currently available to patients. Following this clinical study, we hope to have this available on the market for patients within three years,” Professor Farina said.

The researchers are currently working to gain greater control over the hand, including the ability to move individual fingers, and eliminate the need for electrodes by transferring signals wirelessly within the patient’s body.

Subscribe to our newsletter

Related articles

An ultra-precise mind-controlled prosthetic

An ultra-precise mind-controlled prosthetic

Researchers have tapped faint, latent signals from arm nerves and amplified them to enable real-time, intuitive, finger-level control of a robotic hand.

Robotic hand merges amputee and robotic Control

Robotic hand merges amputee and robotic Control

Scientists have successfully tested neuroprosthetic technology that combines robotic control with users’ voluntary control, opening avenues in the new interdisciplinary field of shared control for neuroprosthetic technologies.

Smart device makes prosthetic hands easier to use

Smart device makes prosthetic hands easier to use

Researchers have developed new technology for decoding neuromuscular signals to control powered, prosthetic wrists and hands.

3D printing and AI improve cochlear implants

3D printing and AI improve cochlear implants

3D printing and machine learning unite in new research to improve cochlear implants for users.

Miniaturized implants for personalized therapy

Miniaturized implants for personalized therapy

Researchers are working on miniaturization, external power supplies and wirelessly networked implants.

Bionic arm restores natural behaviors in patients

Bionic arm restores natural behaviors in patients

A first-of-its-kind bionic arm for patients with upper-limb amputations allows wearers to think, behave and function like a person without an amputation.

Bleak cyborg future from brain-computer interfaces

Bleak cyborg future from brain-computer interfaces

Researchers warn of the potential social, ethical, and legal consequences of technologies interacting heavily with human brains.

Liquid metal sensors and AI used for prosthetics

Liquid metal sensors and AI used for prosthetics

For the first time, researchers incorporated stretchable tactile sensors using liquid metal on the fingertips of a prosthetic hand.

Bionic eye: Computer model fosters improvements

Bionic eye: Computer model fosters improvements

Researchers develop signals that could bring color vision and improved clarity to prosthesis for the blind.

Popular articles

Subscribe to Newsletter